期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合空间与通道重构卷积和注意力的轻量型动物姿态估计
被引量:
1
1
作者
宰清鹏
徐杨
《计算机工程与应用》
北大核心
2025年第6期282-294,共13页
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提...
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提出融合空间与通道重构卷积和金字塔分割注意力的多尺度动物姿态估计网络SPANet。使用金字塔分割注意力与坐标注意力机制,重新设计了高分辨率网络的瓶颈层EPSAneck,在减轻过度使用大卷积核带来的计算成本的同时,增强了网络对有用特征的提取能力;提出了基于空间和通道重构卷积以及坐标注意力机制的SCCAblock基础模块,在显著减少计算冗余和内存访问的同时,增强了通道与空间之间的信息交互;利用反卷积模块对网络输出的特征融合方式进行重新设计,进一步提升了网络的准确率。实验结果表明,提出的网络模型相较于高分辨率网络在AP10K测试集上的平均精度提升了1.8个百分点,同时浮点运算量降低了48.5%、模型参数量减少了67.0%。在AnimalPose数据集上,浮点运算量降低49.5%,模型参数量降低67.0%。实验数据表明,该网络可在降低模型复杂度的同时实现预测精度的小范围提升。
展开更多
关键词
动物姿态估计
轻量型
高分辨率
注意力机制
空间与通道重构卷积
在线阅读
下载PDF
职称材料
题名
融合空间与通道重构卷积和注意力的轻量型动物姿态估计
被引量:
1
1
作者
宰清鹏
徐杨
机构
贵州大学大数据与信息工程学院
贵阳铝镁设计研究院有限公司
出处
《计算机工程与应用》
北大核心
2025年第6期282-294,共13页
基金
贵州省科技计划项目(黔科合支撑[2023]一般326)。
文摘
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提出融合空间与通道重构卷积和金字塔分割注意力的多尺度动物姿态估计网络SPANet。使用金字塔分割注意力与坐标注意力机制,重新设计了高分辨率网络的瓶颈层EPSAneck,在减轻过度使用大卷积核带来的计算成本的同时,增强了网络对有用特征的提取能力;提出了基于空间和通道重构卷积以及坐标注意力机制的SCCAblock基础模块,在显著减少计算冗余和内存访问的同时,增强了通道与空间之间的信息交互;利用反卷积模块对网络输出的特征融合方式进行重新设计,进一步提升了网络的准确率。实验结果表明,提出的网络模型相较于高分辨率网络在AP10K测试集上的平均精度提升了1.8个百分点,同时浮点运算量降低了48.5%、模型参数量减少了67.0%。在AnimalPose数据集上,浮点运算量降低49.5%,模型参数量降低67.0%。实验数据表明,该网络可在降低模型复杂度的同时实现预测精度的小范围提升。
关键词
动物姿态估计
轻量型
高分辨率
注意力机制
空间与通道重构卷积
Keywords
animal pose estimation
lightweight
high-resolution
attention mechanism
spatial and channel reconstruction convolution
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合空间与通道重构卷积和注意力的轻量型动物姿态估计
宰清鹏
徐杨
《计算机工程与应用》
北大核心
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部