期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合空间与通道重构卷积和注意力的轻量型动物姿态估计 被引量:1
1
作者 宰清鹏 徐杨 《计算机工程与应用》 北大核心 2025年第6期282-294,共13页
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提... 动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提出融合空间与通道重构卷积和金字塔分割注意力的多尺度动物姿态估计网络SPANet。使用金字塔分割注意力与坐标注意力机制,重新设计了高分辨率网络的瓶颈层EPSAneck,在减轻过度使用大卷积核带来的计算成本的同时,增强了网络对有用特征的提取能力;提出了基于空间和通道重构卷积以及坐标注意力机制的SCCAblock基础模块,在显著减少计算冗余和内存访问的同时,增强了通道与空间之间的信息交互;利用反卷积模块对网络输出的特征融合方式进行重新设计,进一步提升了网络的准确率。实验结果表明,提出的网络模型相较于高分辨率网络在AP10K测试集上的平均精度提升了1.8个百分点,同时浮点运算量降低了48.5%、模型参数量减少了67.0%。在AnimalPose数据集上,浮点运算量降低49.5%,模型参数量降低67.0%。实验数据表明,该网络可在降低模型复杂度的同时实现预测精度的小范围提升。 展开更多
关键词 动物姿态估计 轻量型 高分辨率 注意力机制 空间与通道重构卷积
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部