期刊文献+
共找到357篇文章
< 1 2 18 >
每页显示 20 50 100
基于多重注意力机制和空间变换网络的换衣行人重识别
1
作者 李鹏辉 王洪元 +1 位作者 张继 陈海琴 《南京大学学报(自然科学版)》 北大核心 2025年第2期202-213,共12页
换衣行人重识别(Cloth-Changing Person Re-Identification,CC Re-ID)技术旨在监控视频或图像中针对同一行人在长时间跨度中进行识别,现有方法主要利用多模态信息来建模体型以减轻服装的影响,但其泛化能力差且需大量额外工作,而且,仅利... 换衣行人重识别(Cloth-Changing Person Re-Identification,CC Re-ID)技术旨在监控视频或图像中针对同一行人在长时间跨度中进行识别,现有方法主要利用多模态信息来建模体型以减轻服装的影响,但其泛化能力差且需大量额外工作,而且,仅利用RGB图像的方法无法充分提取与服装无关的信息.针对以上问题,提出一种基于多重注意力机制和空间变换网络的换衣行人重识别方法,通过在主干网络中融入CBAM(Convolutional Block Attention Module)和STN(Spatial Transformer Network,STN)模块,分别提升网络对于不同通道和空间位置重要性的感知能力以及对于不同角度图像的适应能力.为了进一步提高网络对行人细粒度特征的提取能力,融入三重注意力机制来关注不同维度上的信息,引入一个自适应特征提取模块来学习特征中不同区域的重要性.此外,还采用服装分类损失和服装对抗损失等多种损失函数来引导模型学习与服装无关的信息.在四个换衣行人重识别数据集(LTCC,PRCC,VC-Clothes和DeepChange)上进行了大量实验,实验结果表明,提出的方法的Rank-1和mAP指标优于一些先进的换衣行人重识别方法. 展开更多
关键词 换衣行人重识别 基于服装的对抗性损失 三重注意力机制 空间变换网络 自适应特征提取
在线阅读 下载PDF
基于坐标注意力机制的轻量级安全帽佩戴检测
2
作者 盖勇刚 《南京信息工程大学学报》 北大核心 2025年第3期315-327,共13页
在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳.针对此问题,提出一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性.首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参... 在安全帽佩戴检测中,存在着目标密集、遮挡等问题,现有的检测方法在精度和实时性方面表现不佳.针对此问题,提出一种轻量级的检测模型CA-YOLO,旨在提升检测的准确性与实时性.首先,使用MobileNetv3网络对YOLOv8的主干网络进行改进,减少参数量和计算量,提升网络的检测速度.在Neck部分引入DCNv3模块来提升模型在空间特征上的提取效率.其次,在网络中加入多尺度特征提取模块和坐标注意力机制模块,通过添加全局信息,丰富特征信息,提升网络特征提取效果.最后,将CIoU损失替换为Alpha-IoU函数,通过设定权重系数,加速对目标的学习过程,进一步提高检测的精度.实验结果表明,与YOLOv8模型和现有的经典及新颖算法相比,CA-YOLO模型的平均检测精度达91.33%,比YOLOv8模型提高0.54个百分点,模型大小和参数量分别减少41%和39%,检测速度提高16.9%.相较于其他模型,CA-YOLO模型在准确率和实时性方面取得了良好的平衡,满足了对作业人员安全帽佩戴检测的需求. 展开更多
关键词 目标检测 安全帽佩戴检测 YOLOv8 坐标注意力机制 轻量化
在线阅读 下载PDF
融合邻域注意力和状态空间模型的医学视频分割算法
3
作者 丁建睿 张听 +1 位作者 刘家栋 宁春平 《电子与信息学报》 北大核心 2025年第5期1582-1595,共14页
在医学影像分析领域,精准分割视频中的病灶对于疾病的早期诊断和治疗至关重要。该文创新性地提出一种融合邻域注意力机制与状态空间模型的算法,旨在全面而精细地捕捉医学视频中的时空特征,从而对视频中的病灶进行准确分割。该算法通过... 在医学影像分析领域,精准分割视频中的病灶对于疾病的早期诊断和治疗至关重要。该文创新性地提出一种融合邻域注意力机制与状态空间模型的算法,旨在全面而精细地捕捉医学视频中的时空特征,从而对视频中的病灶进行准确分割。该算法通过两阶段的精心设计,显著提升了分割性能:第1阶段,通过深度卷积网络捕获低层次的空间语义信息,并借助邻域注意力机制,挖掘相邻帧间的局部时序语义关联。第2阶段,引入状态空间模型来捕捉全面的时序信息,并再次应用邻域注意力模块,进一步增强对局部时序特征的敏感度。该方法不仅有效整合了视频中丰富的时序信息,而且在局部和全局层面上实现了空间与时间特征的协同优化。相较于使用具有2次计算复杂度的自注意力机制,该文采用了具有线性计算复杂度的状态空间模型,显著提升了模型的训练效率和推理速度。所提算法在甲状腺超声视频数据集以及结肠息肉视频数据集CVC-ClinicDB和CVC-ColonDB上的交并比(IOU)指标分别达到了72.7%,82.3%和72.5%,相比该文的基线模型Vivim分别提高了5.7%,1.7%和5.5%。此外,消融实验进一步揭示了邻域注意力模块和状态空间模型在提取时序信息中发挥的关键作用。 展开更多
关键词 医学视频分割 邻域注意力机制 状态空间模型
在线阅读 下载PDF
基于坐标注意力和软化非极大值抑制的密集安全帽检测
4
作者 尹向雷 苏妮 +1 位作者 解永芳 屈少鹏 《现代电子技术》 北大核心 2025年第2期153-161,共9页
为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进... 为解决现有的安全帽检测算法对密集小目标的检测精度低的问题,提出一种基于坐标注意力和软化非极大值抑制的安全帽检测算法。引入坐标注意力机制,聚焦训练安全帽相关目标特征以提高准确率。采用软化非极大值抑制算法对候选框的置信度进行优化,提升模型对密集小目标的检测精度。通过WIoU优化边界框损失函数,使得模型聚焦于困难样例而减少简单示例对损失值的贡献,提升模型的泛化性能。实验结果表明:与基准模型YOLOv5s相比,所提算法的mAP@0.5达到88.4%,提升了3.0%;mAP@0.5:0.95达到65.6%,提升了6.8%;在召回率和准确率上分别提升了2.4%和0.5%。所提算法为密集小目标的检测提供了一定参考。 展开更多
关键词 安全帽检测 坐标注意力机制 软化非极大值抑制 YOLOv5s WIoU 边界框损失函数
在线阅读 下载PDF
结合倒残差自注意力机制的遥感图像目标检测
5
作者 赵文清 赵振寰 巩佳潇 《智能系统学报》 北大核心 2025年第1期64-72,共9页
针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,... 针对遥感图像目标检测存在背景信息干扰严重、待检测目标尺寸差异大等问题,提出一种结合倒残差自注意力机制的目标检测方法。首先,使用具有强特征提取能力的倒残差自注意力机制骨干网络充分提取目标特征,降低复杂背景信息的干扰;其次,构造多尺度空间金字塔池化模块,提供多尺度感受野,增强捕捉不同尺寸目标的能力;最后,提出轻量级特征融合模块,对骨干网络提取的特征图进行融合,充分结合低层与高层特征,提高网络对不同尺寸目标的检测能力。与传统网络及其他改进目标检测算法进行对比,实验发现该方法的检测精度明显优于其他算法。此外,在DIOR数据集和RSOD数据集上设计消融实验,结果表明,该方法在DIOR数据集与RSOD数据集上的平均精度均值比YOLOv8算法分别提升4.6和4.2百分点,明显提升遥感图像目标检测的精度。 展开更多
关键词 遥感图像 目标检测 倒残差 注意力机制 多尺度 空间金字塔 特征提取 特征融合
在线阅读 下载PDF
选择性坐标注意力下红外图像无人机目标检测方法 被引量:1
6
作者 吴茜 魏晶鑫 陈中举 《现代电子技术》 北大核心 2025年第7期43-47,共5页
为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整... 为解决无人机带来的安全隐患与隐私侵犯等问题,提出选择性坐标注意力下红外图像无人机目标检测方法。基于选择性坐标注意力机制,通过非对称卷积核在不同方向上捕捉不同尺度和形状的特征,将无人机特征的行列位置信息进行编码,动态地调整不同位置特征的权重,强化关键区域的特征表示。将多个红外图像输入YOLOv5网络中进行训练和处理后,在主干网络中经卷积操作后嵌入选择性坐标注意力机制,实现红外图像无人机目标特征精确提取。采用GIoU作为损失函数,优化预测框的位置和大小,实现红外图像无人机目标精准检测。实验结果表明:该方法对大小不同的无人机目标均能实现准确且快速的定位与检测,能够保持较高的检测精度。 展开更多
关键词 坐标注意力机制 特征融合 YOLOv5网络 红外图像 无人机目标 目标检测
在线阅读 下载PDF
噪声环境下基于域对抗图卷积网络和坐标注意力的说话人确认方法 被引量:1
7
作者 陈家辉 葛子瑞 +2 位作者 王天朗 郭海燕 杨震 《南京邮电大学学报(自然科学版)》 北大核心 2025年第1期57-67,共11页
为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。... 为了减弱背景噪声对说话人确认(Speaker Verification,SV)性能的影响,提出一种基于域对抗图卷积网络(Domain Adversarial Graph Convolution Network,DA⁃GCN)和坐标注意力(Coordinate Attention,CA)的SV方法来提升噪声环境下的SV性能。首先,针对噪声环境下局部特征变得不稳定这个问题,提出引入CA模块,将全局时间信息和全局频率信息编码到通道注意力中,以强调有用通道,提取鲁棒性的说话人特征。其次,提出构建DA⁃GCN来辅助主网络提取与噪声相关性更小的说话人特征来进行后续的分类。具体而言,将语音信号映射为图信号,利用GCN分别对干净语音图信号特征和含噪语音图信号特征进行聚合,通过域对抗(Domain Adversarial,DA)训练,辅助主网络提取干净语音域和含噪语音域共享的说话人特征,从而降低噪声对SV性能的影响。在VoxCeleb1数据集上的实验结果表明,所提CA⁃DA⁃GCN的性能优于基线模型ExU⁃Net且表现出良好的泛化能力。 展开更多
关键词 噪声环境 说话人确认 域对抗 坐标注意力机制 图卷积神经网络
在线阅读 下载PDF
结合语言模型双编码和坐标注意力卷积的知识图谱补全
8
作者 王瑄 王晓霞 陈晓 《计算机工程与应用》 北大核心 2025年第14期206-213,共8页
知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没... 知识图谱补全(KGC)旨在学习知识图谱中的现有知识实现对缺失三元组的补全。近期的相关研究表明,将语言模型(LM)应用于KGC任务能够改善模型在结构稀疏的知识图谱上的推理性能。针对现有结合LM的KGC模型性能仅依赖于LM捕获的语义特征,没有同时考虑知识图谱的结构信息和语义信息的问题,提出一种结合语言模型双编码和坐标注意的知识图谱补全方法LDCA。在编码时,通过引入掩码预训练的语言模型双编码结构,充分学习实体和关系的语义特征;在解码时,使用坐标注意力机制的卷积神经网络捕获实体和关系组合嵌入的跨通道信息、方向感知信息和位置感知信息。在WN18RR和FB15K-237数据集上的实验结果表明,LDCA模型在MR、MRR、Hits@1、Hits@3和Hits@10上的整体性能优于基准模型,验证了所提出模型的有效性和先进性。 展开更多
关键词 语言模型(LM) 掩码预训练 坐标注意力机制 卷积神经网络
在线阅读 下载PDF
DR_YOLOv8s++:改进卷积注意力机制和损失函数的SAR影像船舰目标检测网络
9
作者 杨明秋 陈国坤 +1 位作者 董燕 左小清 《遥感信息》 北大核心 2025年第2期159-168,共10页
针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池... 针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池化focal modulation networks来提升网络性能,提出的网络命名为DR_YOLOv8s++检测网络。为验证DR_YOLOv8s++网络的有效性和通用性,在SSDD、HRSID数据集上进行实验。结果表明,所提出算法的平均精度均值分别达到98%、97.5%,优于其他经典算法,模型性能提升明显,同其他目标检测算法相比,具有较强的泛化能力。 展开更多
关键词 船舰目标检测 SAR影像 注意力机制 可变形卷积 融合空间金字塔池化 损失函数
在线阅读 下载PDF
基于坐标注意力机制增强的CenterNet模型在烟草甲检测中的应用
10
作者 孙俊峰 王保录 +1 位作者 黄琰淦 黄滔 《湖北农业科学》 2024年第11期191-196,215,共7页
通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、... 通过在CenterNet模型中引入坐标注意力机制,使CAM-CenterNet模型更多地关注对烟草甲(Lasioderma serricorne)(以下简称烟虫)表征能力好的通道和位置,降低烟丝、烟末等杂质的干扰,将精确率(Precision)、召回率(Recall)、平均精度(mAP)、每秒帧率(FPS)以及模型参数量(Params size)作为评价指标,对CAM-CenterNet模型、CenterNet模型、YOLOv3模型和Faster R-CNN模型的烟虫检测性能进行对比。结果表明,在召回率和平均精度方面,YOLOv3模型表现最好,CAM-CenterNet模型稍落后于YOLOv3模型,但高于其他模型;在帧率方面,CAM-CenterNet模型检测烟虫图像的速度较YOLOv3模型更快,且模型参数量更少,对设备配置要求更低。在检测个体较小的烟虫时,CAM-CenterNet模型的烟虫检出数量高于Faster R-CNN模型、YOLOv3模型。CAM-CenterNet模型不仅能更多地关注烟虫目标特征,而且能很好地抑制烟丝、烟末等杂质带来的干扰,实现烟虫的有效检测。CAM-CenterNet模型能满足卷烟厂对烟虫检测速度和精度的要求,可以为烟厂的烟虫整治提供技术支持。 展开更多
关键词 坐标注意力机制 CenterNet模型 CAM-CenterNet模型 烟草甲(Lasioderma serricorne)检测
在线阅读 下载PDF
融合多尺度与坐标注意力的城市扩张模拟
11
作者 孙令博 刘明皓 +2 位作者 罗庆喜 许汀汀 陈春 《西南大学学报(自然科学版)》 CAS 北大核心 2025年第2期145-159,共15页
针对基于机器学习的元胞自动机在土地覆被变化模拟中存在的尺度效应和非平稳性特征提取不充分等问题,构建了ASPP(空洞空间金字塔池化)-CRA(坐标注意力)Unet-CARS(基于多类随机斑块种子)耦合模型。以成渝地区双城经济圈2012、2016、2020... 针对基于机器学习的元胞自动机在土地覆被变化模拟中存在的尺度效应和非平稳性特征提取不充分等问题,构建了ASPP(空洞空间金字塔池化)-CRA(坐标注意力)Unet-CARS(基于多类随机斑块种子)耦合模型。以成渝地区双城经济圈2012、2016、2020年实际城市土地利用变化数据为例,设计2组实验验证了模型的性能,并将其应用于预测2024年及2028年的城市扩张模式。通过模型对比结果显示,ASPP-CRAUnet-CARS模型的Kappa值为0.9123,FoM值为0.4142,Kappa值分别比RF-CMCNN-CA模型和UMCNN-CA模型的高出0.0208和0.0342,FoM值则分别提升了0.0306和0.0679。消融实验表明:去除ASPP和CRA模块后Kappa值与FoM值均有所下降。研究结果表明:ASPP-CRAUnet-CARS模型融合了传统元胞自动机和深度学习模型的双重优势,能较好地学习到城市发展中的复杂空间特征,改善了空间非平稳性建模效果,有效提高了模拟精度。 展开更多
关键词 ASPP-CRAUnet-CARS模型 多尺度特征 注意力机制 空间非平稳性
在线阅读 下载PDF
基于多尺度特征和增强混合注意力机制的材料SEM图像检索方法
12
作者 曾凡运 廉贺淳 +1 位作者 冯珊珊 王庆梅 《计算机科学》 北大核心 2025年第S1期397-403,共7页
材料SEM图像内容丰富,传统检索方法以及通用领域的检索方法在提取图像特征时容易受图像失真和纹理复杂等多种因素干扰,对关键特征的提取效果不佳.针对常规方法在提取材料SEM图像特征和高效检索方面存在的不足,提出一种基于多尺度特征信... 材料SEM图像内容丰富,传统检索方法以及通用领域的检索方法在提取图像特征时容易受图像失真和纹理复杂等多种因素干扰,对关键特征的提取效果不佳.针对常规方法在提取材料SEM图像特征和高效检索方面存在的不足,提出一种基于多尺度特征信息的融合空洞卷积池化金字塔(ASPP)与增强混合注意力机制(ECBAM)的图像检索方法.该方法使用ConvNeXt网络进行特征提取,ConvNeXt结合膨胀卷积的大尺寸感受野和残差网络提取语义特征的优势,有助于捕捉到更多的细节和复杂纹理,能够更好地提取局部和全局特征;此外,通过引入最新的Mamba模块并将其改为双向架构以融入CBAM,提出了增强型混合注意力机制ECBAM,并将ASPP与ECBAM结合使用,从而稳定高效地对特征进行融合与增强.实验结果表明,在材料SEM图像数据集上,该方法获得了较好的检索效果,与主流检索方法相比平均检索精度提升了1.5%. 展开更多
关键词 微观图像 图像检索 空间金字塔 混合注意力机制 Mamba
在线阅读 下载PDF
基于多尺度空间注意力引导的图像超分辨率重建网络
13
作者 程德强 王培杰 +2 位作者 董彦强 寇旗旗 江鹤 《北京航空航天大学学报》 北大核心 2025年第7期2185-2195,共11页
针对基于注意力机制的图像超分辨率重建网络忽视了注意力特征的差异性,仅将注意力机制直接引入到网络模型中,对不同层次特征进行相同处理的问题,设计了一种多尺度空间注意力引导的图像超分辨率重建网络SAGN。提出了增强特征提取残差块(E... 针对基于注意力机制的图像超分辨率重建网络忽视了注意力特征的差异性,仅将注意力机制直接引入到网络模型中,对不同层次特征进行相同处理的问题,设计了一种多尺度空间注意力引导的图像超分辨率重建网络SAGN。提出了增强特征提取残差块(ERB),完善了局部信息的表征能力;集成了多尺度空间注意力(MSA)模块,获取了MSA特征信息;引入了注意力引导模块(AGM),对不同的特征分配个性化的权重,以实现有效的上下文全局特征融合和冗余信息抑制。实验结果表明:量化测试和主观效果上,相比于传统的注意力结构,SAGN在4个基准数据集上都展现出了优越性,其4倍重建结果的峰值信噪比(PSNR)较次优模型平均提高了0.05 dB,进一步证实了SAGN在恢复图像的几何结构和细节方面的优势。 展开更多
关键词 超分辨率重建 卷积神经网络 注意力机制 多尺度空间注意力 注意力引导
在线阅读 下载PDF
融合坐标与多头注意力机制的交互语音情感识别 被引量:2
14
作者 高鹏淇 黄鹤鸣 樊永红 《计算机应用》 CSCD 北大核心 2024年第8期2400-2406,共7页
语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组... 语音情感识别(SER)是人机交互系统中一项重要且充满挑战性的任务。针对目前SER系统中存在特征单一和特征间交互性较弱的问题,提出多输入交互注意力网络MIAN。该网络由特定特征坐标残差注意力网络和共享特征多头注意力网络两个子网络组成。前者利用Res2Net和坐标注意力模块学习从原始语音中获取的特定特征,并生成多尺度特征表示,增强模型对情感相关信息的表征能力;后者融合前向网络所获取的特征,组成共享特征,并经双向长短时记忆(BiLSTM)网络输入至多头注意力模块,能同时关注不同特征子空间中的相关信息,增强特征之间的交互性,以捕获判别性强的特征。通过2个子网络间的协同作用,能增加模型特征的多样性,增强特征之间的交互能力。在训练过程中,应用双损失函数共同监督,使同类样本更紧凑、不同类样本更分离。实验结果表明,MIAN在EMO-DB和IEMOCAP语料库上分别取得了91.43%和76.33%的加权平均精度,相较于其他主流模型,具有更好的分类性能。 展开更多
关键词 语音情感识别 坐标注意力机制 多头注意力机制 特定特征学习 共享特征学习
在线阅读 下载PDF
融合空间与通道重构卷积和注意力的轻量型动物姿态估计
15
作者 宰清鹏 徐杨 《计算机工程与应用》 北大核心 2025年第6期282-294,共13页
动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提... 动物姿态估计在行为生态学、动物健康监测、野生动物保护等领域的重要性不断凸显。然而,目前主流的动物姿态估计算法过于关注准确率,导致网络复杂度和计算成本不断攀升,这使得在移动设备和嵌入式平台上的应用受到了限制。针对该问题,提出融合空间与通道重构卷积和金字塔分割注意力的多尺度动物姿态估计网络SPANet。使用金字塔分割注意力与坐标注意力机制,重新设计了高分辨率网络的瓶颈层EPSAneck,在减轻过度使用大卷积核带来的计算成本的同时,增强了网络对有用特征的提取能力;提出了基于空间和通道重构卷积以及坐标注意力机制的SCCAblock基础模块,在显著减少计算冗余和内存访问的同时,增强了通道与空间之间的信息交互;利用反卷积模块对网络输出的特征融合方式进行重新设计,进一步提升了网络的准确率。实验结果表明,提出的网络模型相较于高分辨率网络在AP10K测试集上的平均精度提升了1.8个百分点,同时浮点运算量降低了48.5%、模型参数量减少了67.0%。在AnimalPose数据集上,浮点运算量降低49.5%,模型参数量降低67.0%。实验数据表明,该网络可在降低模型复杂度的同时实现预测精度的小范围提升。 展开更多
关键词 动物姿态估计 轻量型 高分辨率 注意力机制 空间与通道重构卷积
在线阅读 下载PDF
基于空间金字塔注意力机制残差网络的高光谱图像分类
16
作者 刘和 宋璎珞 +3 位作者 胡龙湘 刘国辉 王侃 王爱丽 《液晶与显示》 CAS CSCD 北大核心 2024年第6期833-843,共11页
为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征... 为了提取高光谱图像的空间-光谱联合特征,本文提出了一种基于改进的空间金字塔注意力机制残差网络的高光谱图像分类模型。首先采用主成分分析法去除光谱冗余,结合空间金字塔注意力机制,改进残差网络的高光谱图像分类模型获取精细化特征。然后利用空间金字塔注意力模型实现多尺度联合特征关注,提升对联合特征的敏感性,并有效地强调并聚焦空间和光谱信息,实现信息交互。最后经过Softmax分类器获得分类标签。本文提出的方法在MUUFL和Tento数据集上进行了实验,结果表明,本文算法的总体分类精度分别达到了94.08%和98.32%。相比于其他高光谱分类模型,本文模型的收敛速度较快,在分类性能上取得了明显的提升,获得了更高的地物分类精度。 展开更多
关键词 高光谱 图像分类 注意力机制 空间-光谱特征
在线阅读 下载PDF
采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测 被引量:1
17
作者 聂鹏 杨程越 +2 位作者 彭新月 于家鹤 潘五九 《中国机械工程》 EI CAS CSCD 北大核心 2024年第10期1793-1801,共9页
针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信... 针对碳纤维增强复合材料(CFRP)与钛合金组成的叠层材料在制备装配孔时存在刀具磨损严重的问题,提出了一种空间和通道激励注意力机制(scSE)优化深度残差神经网络(ResNet-50)的刀具磨损监测方法。开展钻削实验,采集钻削过程中的力和温度信号,信号经连续小波变换转换为小波尺度谱。搭建ResNet-50网络结构,从空间和通道双维度对卷积提取的特征图进行权重标定。研究结果表明,scSE可以从空间和通道两个维度做到增强有用特征,抑制无用特征,经scSE优化的网络结构识别准确度达到96.15%。 展开更多
关键词 刀具磨损 连续小波变换 空间和通道激励注意力机制 深度残差神经网络
在线阅读 下载PDF
基于改进卷积注意力机制的触觉图像识别 被引量:8
18
作者 熊鹏文 陈志远 +1 位作者 廖俊杰 宋爱国 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期175-182,共8页
为了改善传统轻量化网络对触觉图像全局特征提取能力差的问题,提出一种基于轻量化网络提高触觉图像感知分类的新算法,通过将卷积块注意力模块(CBAM)引入坐标注意力机制(CA)来增强特征信息表达能力.利用CA采取空间全局信息并嵌入通道注意... 为了改善传统轻量化网络对触觉图像全局特征提取能力差的问题,提出一种基于轻量化网络提高触觉图像感知分类的新算法,通过将卷积块注意力模块(CBAM)引入坐标注意力机制(CA)来增强特征信息表达能力.利用CA采取空间全局信息并嵌入通道注意中,使卷积网络能够在较全面的区域捕获注意力权重.结果表明:所提算法优于现有轻量化网络算法;该算法对GelSight数据集、多模态传感器数据集2种触觉图像进行分类识别测试,在分类表现中分辨正确率分别达到了88.2%和94.4%;相比于传统的CBAM注意力模型、自注意力模型(SENet)和仅有LeNet的神经网络,该算法对触觉图像的识别能力在GelSight数据集上分别提高了8.7%、8.7%和3.0%,在多模态传感器数据集上分别提高了13.3%、13.4%和4.8%. 展开更多
关键词 触觉图像 轻量化 注意力机制 坐标注意力
在线阅读 下载PDF
基于端口注意力与通道空间注意力的网络异常流量检测 被引量:8
19
作者 肖斌 甘昀 +2 位作者 汪敏 张兴鹏 王照星 《计算机应用》 CSCD 北大核心 2024年第4期1027-1034,共8页
网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端... 网络异常流量检测是网络安全保护重要组成部分之一。目前,基于深度学习的异常流量检测方法都是将端口号属性与其他流量属性同等对待,忽略了端口号的重要性。为了提高异常流量检测性能,借鉴注意力思想,提出一个卷积神经网络(CNN)结合端口注意力模块(PAM)和通道空间注意力模块(CBAM)的网络异常流量检测模型。首先,将原始网络流量作为PAM的输入,分离得到端口号属性送入全连接层,得到学习后的端口注意力权重值,并与其他流量属性点乘,输出端口注意力后的流量数据;其次,将流量数据转换成灰度图,利用CNN和CBAM更充分地提取特征图在通道和空间上的信息;最后,使用焦点损失函数解决数据不平衡的问题。所提PAM具有参数量少、即插即用和普遍适用的优点。在CICIDS2017数据集上,所提模型的异常流量检测二分类任务准确率为99.18%,多分类任务准确率为99.07%,对只有少数训练样本的类别也有较高的识别率。 展开更多
关键词 异常流量检测 注意力机制 数据不平衡 轻量级网络 通道空间注意力模块
在线阅读 下载PDF
基于融合注意力机制LSTM网络的地下水位自适应鲁棒预测 被引量:4
20
作者 佃松宜 厉潇滢 +2 位作者 杨丹 芮胜阳 郭斌 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第1期54-64,共11页
地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略。针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问... 地下水水位是旱天污水管网地下水入渗量的重要影响因素,快速精准地预测地下水水位能有效提升旱天污水管网地下水入渗量估算准确度,辅助优化管网病害治理与维护策略。针对目前城市复杂水文预测存在的准确度低、灵敏度低、泛化能力弱等问题,本文提出了一种新的鲁棒自适应水位预测算法。首先,对水文数据进行预处理,解决了数据时间跨度大、噪声多、缺失及异常、非平稳等问题。其次,针对不同输入特征对预测指标的影响,在模型训练阶段提出一种新的空间变量注意机制,可快速识别与水位关联的关键变量,并对输入特征赋予不同的影响权重。然后,针对不同序列长度对预测效果的影响,还设计了自适应时间注意力机制,帮助网络自适应地找出与不同时间序列长度预测指标相关的编码器隐藏状态,以更好地捕捉时间上的依赖关系。在此基础上,以上下文向量作为输入,提出一种融合注意力机制的长短时记忆网络水文预测算法。最后,通过意大利Petrignano水文数据验证了所提算法的有效性,并与GRU、Elman、LSTM、VA–LSTM和S–LSTM等方法进行预测性能比较。结果表明,基于融合注意力机制的LSTM网络在面临大规模、噪点多的复杂数据时有优于其它几种算法的预测效果,表明该算法具有强自适应性和鲁棒性。本文研究结果可以为市政排水策略合理调整、及时控制提供参考。 展开更多
关键词 地下水位预测 时间与空间注意力机制 LSTM网络 自适应预测 鲁棒预测
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部