期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Transformer的空调能耗预测模型构建与参数优化 被引量:3
1
作者 刘兴成 《建筑节能(中英文)》 CAS 2024年第3期82-86,共5页
针对空调系统能耗预测建模过程中的数据质量、模型输入参数筛选等问题,研究基于Transformer神经网络的空调系统能耗预测模型构建和参数优化方法,结果表明:可以通过广义极端学生化偏差方法对数据中的离群值进行检测修正,从而提升数据质量... 针对空调系统能耗预测建模过程中的数据质量、模型输入参数筛选等问题,研究基于Transformer神经网络的空调系统能耗预测模型构建和参数优化方法,结果表明:可以通过广义极端学生化偏差方法对数据中的离群值进行检测修正,从而提升数据质量;通过余弦相似度对输入参数进行两两相关性检验来消除各参数间的多重共线性,实现对输入参数的初步筛选;采用随机森林算法计算初选参数对空调能耗预测结果的影响来判断冗余参数,进而完成对输入特征参数的最终筛选;建立的空调能耗预测模型对数据测试集的预测结果均方根误差RMSE为38.831 kW,相关系数R^(2)为0.952,表现出了良好的预测性能。 展开更多
关键词 空调系统能耗预测 Transformer神经网络 数据质量 模型参数优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部