期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
数据分布特性对空调系统能耗预测的影响
被引量:
10
1
作者
于丹
王丽娜
+3 位作者
曹勇
崔治国
王晨
唐艳南
《科学技术与工程》
北大核心
2020年第14期5723-5728,共6页
空调系统能耗预测是实现智能调控、能源需求管理、系统节能的重要手段和前提之一,当前的空调系统能耗预测主要是基于机器学习算法。诸多机器学习算法的重要理论前提是数据的分布应尽量满足正态分布,然而空调系统的实际运行数据很少能满...
空调系统能耗预测是实现智能调控、能源需求管理、系统节能的重要手段和前提之一,当前的空调系统能耗预测主要是基于机器学习算法。诸多机器学习算法的重要理论前提是数据的分布应尽量满足正态分布,然而空调系统的实际运行数据很少能满足正态分布特性,目前的研究鲜有涉及数据分布特性对空调系统能耗预测的影响。首先基于实际项目的空调系统能耗数据,从偏度和峰度两个指标分析了实际能耗数据分布与正态分布呈现出的偏离;然后通过对数变换对能耗数据进行数据变换,使能耗数据更接近于正态分布;接着以常见的4种能耗预测机器学习算法(广义线性回归算法、支持向量回归算法、人工神经网络算法、随机森林算法)对原始数据和经过数据变换后的数据分别进行空调系统能耗预测工作,分析负荷预测结果的RMSE和R^2统计量。结果对比发现,数据的分布特性对能耗预测有着重要的影响,合适的数据变换可以有效地提高空调系统能耗预测机器学习算法模型的预测效果。
展开更多
关键词
空调系统能耗预测
数据挖掘
机器学习算法
正态分布
数据变换
在线阅读
下载PDF
职称材料
题名
数据分布特性对空调系统能耗预测的影响
被引量:
10
1
作者
于丹
王丽娜
曹勇
崔治国
王晨
唐艳南
机构
北京建筑大学环境与能源工程学院
中国建筑科学研究院有限公司
出处
《科学技术与工程》
北大核心
2020年第14期5723-5728,共6页
基金
“十三五”国家重点研发计划(2016YFB0601700)
中国建筑科学研究院有限公司青年基金。
文摘
空调系统能耗预测是实现智能调控、能源需求管理、系统节能的重要手段和前提之一,当前的空调系统能耗预测主要是基于机器学习算法。诸多机器学习算法的重要理论前提是数据的分布应尽量满足正态分布,然而空调系统的实际运行数据很少能满足正态分布特性,目前的研究鲜有涉及数据分布特性对空调系统能耗预测的影响。首先基于实际项目的空调系统能耗数据,从偏度和峰度两个指标分析了实际能耗数据分布与正态分布呈现出的偏离;然后通过对数变换对能耗数据进行数据变换,使能耗数据更接近于正态分布;接着以常见的4种能耗预测机器学习算法(广义线性回归算法、支持向量回归算法、人工神经网络算法、随机森林算法)对原始数据和经过数据变换后的数据分别进行空调系统能耗预测工作,分析负荷预测结果的RMSE和R^2统计量。结果对比发现,数据的分布特性对能耗预测有着重要的影响,合适的数据变换可以有效地提高空调系统能耗预测机器学习算法模型的预测效果。
关键词
空调系统能耗预测
数据挖掘
机器学习算法
正态分布
数据变换
Keywords
energy consumption prediction of air conditioning system
data mining
machine learning algorithm
normal distribution
data transformation
分类号
TU111.19+5.2 [建筑科学—建筑理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
数据分布特性对空调系统能耗预测的影响
于丹
王丽娜
曹勇
崔治国
王晨
唐艳南
《科学技术与工程》
北大核心
2020
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部