期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
改进U-Net模型的隧道掌子面图像语义分割研究
1
作者 陈登峰 程静 +1 位作者 赵蕾 何拓航 《防灾减灾工程学报》 北大核心 2025年第4期776-783,共8页
隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征... 隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大。因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型。在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力。实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%。 展开更多
关键词 隧道掌子面 图像语义分割 卷积注意力模块 空洞空间卷积池化金字塔模块
在线阅读 下载PDF
融合深度神经网络和空洞卷积的语义图像分割研究 被引量:13
2
作者 陈洪云 孙作雷 孔薇 《小型微型计算机系统》 CSCD 北大核心 2020年第1期166-170,共5页
语义分割是计算机视觉中的基本任务,是对图像中的不同目标进行像素级的分割与分类.针对多尺度的目标分割难题,本文提出了一种基于Res Net网络的方法,通过定义并联支路,将浅层特征图像信息融合到深层特征图像中,提出新的空洞空间金字塔模... 语义分割是计算机视觉中的基本任务,是对图像中的不同目标进行像素级的分割与分类.针对多尺度的目标分割难题,本文提出了一种基于Res Net网络的方法,通过定义并联支路,将浅层特征图像信息融合到深层特征图像中,提出新的空洞空间金字塔模块,该模块采用并行的不同采样率的空洞卷积进行特征提取与融合,从而更有效的提取不同层的特征以及上下文信息,并且在新模块中加入批规范化计算,增强参数调优的稳定性.本文还采用了Adam自适应优化函数,在训练的过程中,使得每个参数的更新都具有独立性,提升了模型训练的稳定性.本文结果在PASCAL VOC 2012语义分割测试集中取得了77.31%mIOU的成果,优于Deeplab V3的效果. 展开更多
关键词 语义分割 神经网络 空洞卷积 空洞空间金字塔模块
在线阅读 下载PDF
基于MobileNet的轻量化云检测模型
3
作者 叶武剑 谢林峰 +2 位作者 刘怡俊 温晓卓 李扬 《自然资源遥感》 北大核心 2025年第3期95-103,共9页
针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制... 针对现有云检测算法计算量和模型规模庞大、在边缘设备上的部署几乎不可行的问题,提出了一种基于MobileNet网络的轻量化云检测模型。该方法在下采样阶段,使用基于注意力机制的残差模块,通过分组卷积降低模型参数量,并结合通道重排机制和挤压激励(squeeze-and-excitation,SE)注意力模块来增强通道间的信息交流。通过这种方式,既减少了参数量和计算复杂度,又保持了对重要特征的提取能力。在上采样阶段,使用了RepConv模块和改进的空洞空间金字塔池化模块(atrous spatial pyramid pooling,ASPP),以提高网络的学习能力和捕捉图像细节与空间信息的能力。实验结果证明,该文模型在参数量和模型复杂度降低的情况下,能够实现较高精度的云检测,具备实用性和可行性。 展开更多
关键词 云检测 MobileNet网络 注意力机制 多尺度特征 空洞空间金字塔池化模块
在线阅读 下载PDF
基于注意力机制的多尺度手部分割方法 被引量:1
4
作者 周雯晴 代素敏 +1 位作者 王阳萍 王文润 《液晶与显示》 CAS CSCD 北大核心 2024年第11期1506-1518,共13页
针对手部边缘细节信息分割不精确及小面积手部的错检、漏检问题,提出一种基于注意力机制的多尺度手部分割方法。首先,对Transformer模块重新进行设计优化,提出窗口自注意力结构和双分支前馈神经网络(Dual-branch FeedForward Networks,D... 针对手部边缘细节信息分割不精确及小面积手部的错检、漏检问题,提出一种基于注意力机制的多尺度手部分割方法。首先,对Transformer模块重新进行设计优化,提出窗口自注意力结构和双分支前馈神经网络(Dual-branch FeedForward Networks,D-FFN)机制,通过窗口自注意力机制整合全局和局部的依赖信息,D-FFN抑制背景信息的干扰;然后,提出一种结合条形池化和级联网络的多尺度特征提取模块增大感受野,提高手部分割模型的准确性和鲁棒性;最后,提出基于Triplet Attention机制的上采样解码器模块,通过调节通道维度与空间维度的注意力权重将目标特征和背景的冗余特征区分开。将所提算法在公开数据集GTEA(Georgia Tech Egocentric Activity)和EYTH(EgoYouTubeHands)上测试,实验结果表明,该算法在两个数据集上的平均交并比(MIoU)值分别达到了95.8%和90.2%,相较于TransUnet算法分别提升了2.5%和2.1%,满足手部图像分割的稳定可靠、精度高、抗干扰能力强等要求。 展开更多
关键词 手部分割 深度学习 TransUnet 前馈神经网络 空洞空间金字塔池化模块 Triplet Attention
在线阅读 下载PDF
融合轻量化ASPP和U-Net的遥感影像烤烟种植区域提取
5
作者 郝戍峰 高宇 +5 位作者 刘萍 李宇昂 张华栋 任鸿杰 田帅杰 寇文韬 《航天返回与遥感》 CSCD 北大核心 2024年第4期139-149,共11页
针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流... 针对目前遥感影像中烤烟边缘识别效率低且识别精度低等问题,文章提出一种融合轻量化ASPP和U-Net框架的遥感影像烤烟种植区域提取模型。首先,该模型在U-Net编码层和解码层连接处加入轻量化空洞空间金字塔池化模块;其次,该模型将线性整流函数(Rectified Linear Unit,ReLU)替换为ReLU6激活函数,能够在低精度计算时压缩动态范围,从而使算法更具鲁棒性;最后,该模型通过采用形态学孔洞填充构建标签图后处理算法,实现分割结果优化。为验证该模型框架的有效性和适用性,文章采用无人机遥感影像作为实验数据集,构建与传统语义分割模型的对比实验以及消融实验等。实验结果表明,通过与FCN、U-Net、SegNet和DeepLabV3+等传统语义分割算法相比较,文章提出的模型获得了较好的分割效果,其像素准确率和平均交并比分别为93.7%和84.1%。此外,该模型在保证模型精度的情况下,还能够提高模型的计算速度。 展开更多
关键词 烤烟种植区域提取 轻量化空洞空间金字塔池化模块 U型网络 后处理
在线阅读 下载PDF
基于语义分割的多目标违禁品识别算法 被引量:5
6
作者 苏志刚 姚少卿 《信号处理》 CSCD 北大核心 2020年第11期1940-1946,共7页
基于深度学习的语义分割算法可以实现安检违禁品自动识别,并获得违禁品的位置、类别及形状信息。但传统的语义分割算法在面对违禁品尺寸不一且目标多样的识别任务时表现较差。针对该问题,本文提出了一种基于语义分割技术的多目标违禁品... 基于深度学习的语义分割算法可以实现安检违禁品自动识别,并获得违禁品的位置、类别及形状信息。但传统的语义分割算法在面对违禁品尺寸不一且目标多样的识别任务时表现较差。针对该问题,本文提出了一种基于语义分割技术的多目标违禁品识别算法。编码阶段,设计使用空洞空间金字塔卷积模块(Atrous Spatial Pyramid Convolution Block,ASPC),提升网络对于特征图多尺度信息的挖掘能力。同时引入注意力机制,对ASPC模块的特征提取过程进行监督,进一步提升模块的特征提取能力。解码阶段,受U-Net模型启发,采用逐级上采样操作,同时加入1×1卷积实现通道降维,减少计算量,提升模型运行速度。实验结果显示,本文提出的算法在多目标违禁品识别任务中表现良好,平均交并比(mIoU)得分78.62,处理单张图片用时(Time)68 ms。 展开更多
关键词 语义分割 多目标违禁品识别 空洞空间金字塔卷积模块 注意力机制
在线阅读 下载PDF
基于上下文信息的遥感图像目标检测 被引量:3
7
作者 梁礼明 李仁杰 +1 位作者 董信 朱晨锟 《电光与控制》 CSCD 北大核心 2023年第10期89-94,共6页
针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感... 针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感知范围,获取更多的上下文信息,提升模型对小尺度目标的检测能力;其次,在特征主干网络中引入坐标注意力(CA)模块,加强模型对浅层网络中目标位置信息的识别能力;最后,将空间金字塔池化模块替换为空洞空间卷积金字塔(ASPP)模块,实现全局信息和局部信息相融合,进一步增强小目标的语义信息。实验结果表明,在RSOD数据集上,改进后算法的mAP_(50)为97.9%,相比原YOLOv5s算法提高了1.7个百分点;FPS达到71帧/s,满足实时性检测的要求。相比其他检测算法,改进后算法具有更低的漏检率和误检率,检测性能更加优秀。 展开更多
关键词 遥感图像 上下文模块 坐标注意力模块 空洞空间卷积金字塔模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部