期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
改进U-Net模型的隧道掌子面图像语义分割研究
1
作者 陈登峰 程静 +1 位作者 赵蕾 何拓航 《防灾减灾工程学报》 北大核心 2025年第4期776-783,共8页
隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征... 隧道掌子面岩体结构是判断岩土工程地质条件、制定施工和支护方案、预防塌方及涌水等事故的直观依据。将U-Net模型应用于掌子面岩体结构图像分割与识别时,下采样过程中缩小图像尺寸会导致岩体部分细节信息丢失,上采样过程中将低层特征传递到高层的跳跃连接导致特征映射过大。因此,提出加入空洞空间卷积池化金字塔模块ASPP和卷积注意力模块CBAM的改进U-Net模型。在U-Net模型的跳跃连接过程中加ASPP,利用不同膨胀率的空洞卷积捕获不同尺度的上下文信息,融合不同感受野的信息,从而更全面的理解图像内容;U-Net模型的下采样过程中加入CBAM,使网络模型更加关注有用的特征,从而增强特征的表达能力。实验结果表明,改进的网络模型相较于原始U-Net模型分割和识别性能有显著提升,在某隧道工程掌子面岩体图像数据集上Precision达到93.04%,mIoU达到74.98%,mPA达到78.89%。 展开更多
关键词 隧道掌子面 图像语义分割 卷积注意力模块 空洞空间卷积池化金字塔模块
在线阅读 下载PDF
基于改进的IIE-SegNet的快速图像语义分割方法 被引量:1
2
作者 李庆 王宏健 +2 位作者 李本银 肖瑶 迟志康 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第2期314-323,共10页
针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计... 针对IIE-SegNet计算复杂度高、计算量大等问题,本文提出一种基于IIE-SegNet的改进方法。编码结构中引入经ImageNet训练过的VGG16和多尺度空洞卷积空间金字塔池化来获得丰富的编码信息;解码结构中,设计全局加平均模块来解决IIE-SegNet计算量大的问题;研究Focal损失函数来解决正、负采样不平衡的问题。实验结果表明:与IIE-SegNet相比,本方法在PASCAL VOC 2012数据集上的语义分割速度更快,平均每次迭代快0.6 s左右,测试单张图像的时间平均减少了0.94 s;分割精度更高,MIoU提升了2.1%。在扩展的PASCAL VOC 2012(Exp-PASCAL VOC 2012)数据集上的语义分割速度更快,平均每次迭代快0.4 s左右,测试单张图像的时间平均减少了0.92 s;分割精度更高,MPA和MIoU分别提升了2.6%和2.8%,特别是对于小尺度目标分割边界更清晰,性能得到了很大的提升。 展开更多
关键词 语义分割 深度学习 多尺度空洞卷积空间金字塔池化 图像信息熵 全局加平均 VGG16 IIE-SegNet
在线阅读 下载PDF
改进全卷积神经网络的甲状腺结节分割方法
3
作者 张雅婷 帅仁俊 +2 位作者 黄道宏 赵宸 吴梦麟 《数据采集与处理》 CSCD 北大核心 2023年第4期873-885,共13页
为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featur... 为了更加精确地分割出甲状腺结节,本文提出了一种改进的全卷积神经网络(Fully convolutional network,FCN)分割模型。相较于FCN,本文方法加入了空洞空间卷积池化金字塔(Atrousspatialpyramidpooling,ASPP)模块与多层特征传递模块(Featuretransfer,FT),并采用LinkNet模型中Decoder模块进行上采样,VGG16主干网络实现特征提取下采样。实验采用来自斯坦福AIMI(Artificial intelligence in medicine and imaging)共享数据集的17413张超声甲状腺结节图像分别用于训练、验证和测试。实验结果表明,相比于其他多种分割模型,本文模型在平均交并比(mean Intersection over union,mIoU),Dice相似系数,F1分数3个分割指标上分别达到了79.7%,87.6%和98.42%,实现了更好的分割效果,有效地提升了甲状腺结节的分割精确度。 展开更多
关键词 甲状腺结节 分割 特征提取 空洞空间卷积池化金字塔
在线阅读 下载PDF
基于改进DeepLabV3+的轻量化茶叶嫩芽采摘点识别模型 被引量:3
4
作者 胡程喜 谭立新 +1 位作者 王文胤 宋敏 《智慧农业(中英文)》 CSCD 2024年第5期119-127,共9页
[目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一... [目的/意义]名优茶的采摘是茶产业中至关重要的环节,识别和定位名优茶嫩芽采摘点是现代化采茶过程中的重要组成部分。传统神经网络方法存在着模型体量大、训练时间长,以及应对场景复杂等问题。本研究以湖南省溪清茶园为实际场景,提出一种新型深度学习算法解决名优茶采摘点的精确分割难题。[方法]对传统的DeepLabV3+算法进行轻量化改进。首先,针对其模型体量大、训练时间长的问题,使用MobilenetV2网络提取图像的初始特征,并按照网络结构划分深浅层特征;其次,将高效通道注意力网络(Efficient Channel Attention Network,ECANet)与空洞空间卷积池化金字塔(Atrous Spatial Pyramid Pooling,ASPP)模块结合,得到ECA_ASPP模块,并将深层特征输入到ECA_ASPP模块中进行多尺度特征融合以减少无效信息,将经过处理后的深浅层特征相加,随后通过卷积和上采样的方式对特征信息进行还原,得到分割结果;最后,通过对识别结果进行处理以获得茶叶嫩芽采摘点。[结果和讨论]改进后的DeepLabV3+在茶叶嫩芽数据集上的平均交并比达到93.71%,平均像素准确率达到97.25%,模型参数量由原来以Xception为底层网络的54.714 M下降至5.818 M。[结论]本研究在茶叶嫩芽结构分割上相对于原版DeepLabV3+的检测速度更快、参数量更小,同时保证了较高的准确率,为智能采茶机器人的采摘提供了新的定位方法。 展开更多
关键词 轻量化模型 DeepLabV3+ 注意力机制 茶叶嫩芽 ECANet 名优茶 空洞空间卷积池化金字塔
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:2
5
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
基于短距离跳跃连接的U2-Net+医学图像语义分割 被引量:1
6
作者 王清华 孙水发 吴义熔 《现代电子技术》 北大核心 2024年第23期29-35,共7页
医学图像分割是保障发展智慧医疗系统的先决条件之一。由于原U2-Net+网络的跳跃连接只关注同分辨率所提取的特征,所以在设计时借鉴FR-UNet网络加入中间层,接收深层的上下文信息与浅层提取的高分辨率特征进行整合;并在中间层的下采样使... 医学图像分割是保障发展智慧医疗系统的先决条件之一。由于原U2-Net+网络的跳跃连接只关注同分辨率所提取的特征,所以在设计时借鉴FR-UNet网络加入中间层,接收深层的上下文信息与浅层提取的高分辨率特征进行整合;并在中间层的下采样使用非对称空洞空间卷积金字塔代替,增加网络模型训练时对边缘信息的关注,并在结构最后加入阈值增强模块,加强对细小特征边缘的识别与分割;同时加入到上采样中,帮助网络更好地提取多尺度特征,增加上下文语义关联。根据正负样本不均衡和难易不同的问题设计了组合的损失函数来监督网络优化。实验结果表明,所提算法在DRIVE、STARE+CHASE_DB1数据集上的F1分数分别提高了1.8%与4.2%,在ISIC2018数据集上的DSC分数提高了2.3%。对分割结果进行可视化后表明,该网络在样本较小的情况下可以充分提取到更加精确的边缘信息和细小的特征信息,提高语义分割的效果,所提算法在医学图像语义分割任务上有更好的表现。 展开更多
关键词 医学图像 语义分割 跳跃连接 非对称空洞空间卷积金字塔 智慧医疗 FR-UNet网络
在线阅读 下载PDF
基于改进YOLOv7的煤矿输送带异物识别算法 被引量:2
7
作者 刘海强 高业成 +1 位作者 陈晓晶 葛广建 《仪表技术与传感器》 CSCD 北大核心 2024年第10期95-99,共5页
针对煤矿井下图像不清晰以及YOLOv7定位误差较大的问题,提出了一种改进YOLOv7模型。首先通过直方图均衡化提高图像目标的清晰度,然后在YOLOv7的主干网络中添加二阶通道注意力模块(SOCA),使其专注于更有益的信息,添加空洞空间卷积池化金... 针对煤矿井下图像不清晰以及YOLOv7定位误差较大的问题,提出了一种改进YOLOv7模型。首先通过直方图均衡化提高图像目标的清晰度,然后在YOLOv7的主干网络中添加二阶通道注意力模块(SOCA),使其专注于更有益的信息,添加空洞空间卷积池化金字塔(ASPP)模块,以多尺度的方式捕获上下文信息。实验结果表明:应用于煤矿输送带异物识别时,改进YOLOv7优于YOLOv7、YOLOv5、YOLOv5-CBAM模型。 展开更多
关键词 煤矿输送带 异物识别 YOLOv7 直方图均衡化 二阶通道注意力(SOCA) 空洞空间卷积池化金字塔(ASPP)
在线阅读 下载PDF
基于小目标类别注意力机制与特征融合的AF-ICNet非结构化场景语义分割方法 被引量:8
8
作者 艾青林 张俊瑞 吴飞青 《光子学报》 EI CAS CSCD 北大核心 2023年第1期181-194,共14页
针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,... 针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,建立通道信息和空间位置信息以增强网络对非结构化道路小目标类别语义特征的提取能力。针对类别分布不均衡问题,改进权重交叉熵损失函数。利用AF-ICNet模型对Cityscapes与IDD数据集进行训练,在Cityscapes测试图像中分割的MIoU达到了71.5%,在IDD测试图像中分割的MIoU达到了62.5%。搭建实验测试系统进行实景测试,测试结果表明,AF-ICNet有效提升了非结构化道路及小目标类别的分割精度,并满足测试的实时性要求。 展开更多
关键词 小目标类别语义分割 AF-ICNet CA注意力机制 空洞空间卷积池化金字塔 损失函数
在线阅读 下载PDF
基于人眼视点图的特征融合小目标检测算法 被引量:2
9
作者 魏文晓 刘洁瑜 +1 位作者 沈强 李成 《系统工程与电子技术》 EI CSCD 北大核心 2022年第4期1120-1127,共8页
针对目前深度学习小目标检测算法在实际应用中存在的漏检率高、精度低等问题,提出了一种基于人眼视点图的特征融合小目标检测算法。基于多类别单阶检测器(single shot multibox detection,SSD)算法通过不同扩张率的空洞卷积融合,在基础... 针对目前深度学习小目标检测算法在实际应用中存在的漏检率高、精度低等问题,提出了一种基于人眼视点图的特征融合小目标检测算法。基于多类别单阶检测器(single shot multibox detection,SSD)算法通过不同扩张率的空洞卷积融合,在基础网络上获得具有类似人眼感受野的浅层特征层;对附加网络中的特征层进行信息融合,合并上下文信息,增加位置信息和全局语义信息,从而提升小目标检测精度。通过PASCAL VOC 2007数据集验证,结果表明,该算法较传统SSD算法检测精度提升了3.7%,较改进的小目标检测算法Bi-SSD精度提升了0.8%,验证了选择更有表征能力的特征层是有效提升小目标检测精度的方法。 展开更多
关键词 小目标检测 单阶检测器算法 空洞卷积空间金字塔 特征金字塔融合
在线阅读 下载PDF
基于语义分割的多目标违禁品识别算法 被引量:5
10
作者 苏志刚 姚少卿 《信号处理》 CSCD 北大核心 2020年第11期1940-1946,共7页
基于深度学习的语义分割算法可以实现安检违禁品自动识别,并获得违禁品的位置、类别及形状信息。但传统的语义分割算法在面对违禁品尺寸不一且目标多样的识别任务时表现较差。针对该问题,本文提出了一种基于语义分割技术的多目标违禁品... 基于深度学习的语义分割算法可以实现安检违禁品自动识别,并获得违禁品的位置、类别及形状信息。但传统的语义分割算法在面对违禁品尺寸不一且目标多样的识别任务时表现较差。针对该问题,本文提出了一种基于语义分割技术的多目标违禁品识别算法。编码阶段,设计使用空洞空间金字塔卷积模块(Atrous Spatial Pyramid Convolution Block,ASPC),提升网络对于特征图多尺度信息的挖掘能力。同时引入注意力机制,对ASPC模块的特征提取过程进行监督,进一步提升模块的特征提取能力。解码阶段,受U-Net模型启发,采用逐级上采样操作,同时加入1×1卷积实现通道降维,减少计算量,提升模型运行速度。实验结果显示,本文提出的算法在多目标违禁品识别任务中表现良好,平均交并比(mIoU)得分78.62,处理单张图片用时(Time)68 ms。 展开更多
关键词 语义分割 多目标违禁品识别 空洞空间金字塔卷积模块 注意力机制
在线阅读 下载PDF
融合改进ASPP和CBAM的竹材端面分割与竹梢位置检测方法 被引量:1
11
作者 石烨炜 鲍光海 《林业工程学报》 CSCD 北大核心 2023年第5期138-145,共8页
在竹集成材的生产流程中,为了减少竹材加工过程中产生的浪费,需要精确获取竹材端面的内周长与厚度。而生长过竹梢的长竹条由于其纤维结构上的特征也无法进行粗刨。为提高竹产业生产效率,降低竹材浪费,提出了一种融合改进后的空洞空间卷... 在竹集成材的生产流程中,为了减少竹材加工过程中产生的浪费,需要精确获取竹材端面的内周长与厚度。而生长过竹梢的长竹条由于其纤维结构上的特征也无法进行粗刨。为提高竹产业生产效率,降低竹材浪费,提出了一种融合改进后的空洞空间卷积池化金字塔(ASPP)与双注意力机制(CBAM)的轻量级端到端网络模型。该网络既能够得到竹梢的精确位置,又能够提取出竹材端面的内外轮廓为后续计算竹材内轮廓周长与厚度提供条件。主干特征提取网络由4个卷积模块(block)组成,共实现16倍的下采样,每个模块内搭建残差结构来缓解梯度消失的问题;上采样阶段采用两次4倍的上采样实现端到端的输出,在两次上采样前分别加入改进后的空洞空间卷积池化金字塔与双注意力机制以提高网络输出的精度。该研究在训练阶段针对不同输出任务采用了不同的损失函数。试验表明,所提出的方法在分割竹材端面任务中交并比达到96.11%,竹梢位置检测任务中距离误差为3.09%,每秒传输帧数达到114.21。与LEDNet、BiSeNet-V2、RegSeg分割网络相比,本研究所提方法能够更好地平衡检测精度与检测速度。 展开更多
关键词 语义分割 关键点检测 轻量级 空洞空间卷积池化金字塔 双注意力机制 竹材
在线阅读 下载PDF
结合MASP和语义分割的双链路行人重识别方法
12
作者 朱亚梅 施一萍 +2 位作者 江悦莹 邓源 刘瑾 《计算机工程与应用》 CSCD 北大核心 2022年第24期143-150,共8页
行人重识别是通过不同的摄像机识别同一个人。由于人的姿势多变,背景杂乱以及拍摄角度不同等,提取强大的行人特征成为一个有挑战性的任务。为了提取良好的行人特征表示,提出了一种结合MASP与语义分割的双链路行人重识别模型。该方法对... 行人重识别是通过不同的摄像机识别同一个人。由于人的姿势多变,背景杂乱以及拍摄角度不同等,提取强大的行人特征成为一个有挑战性的任务。为了提取良好的行人特征表示,提出了一种结合MASP与语义分割的双链路行人重识别模型。该方法对网络不同深度的特征进行采样,不同深度的特征图具有不同的表达能力,使网络可以学习到行人身上更加细粒度的特征。上层链路针对网络过深导致行人信息丢失的问题,提出了MASP模块,对浅层特征进行采样,然后与高级特征连接,对深浅层级特征交融,增加特征的多样性。下层链路基于语义分割结果,对提取的中间层行人特征映射,得出语义部位特征。在测试阶段,将全局特征与语义部位特征结合生成多层次特征,加强模型的表征能力。在Market-1501和DukeMTMC-reID两个数据集上与其他方法的对比以及消融实验表明,提出的结合MASP与语义分割的双链路重识别模型有效提升行人重识别性能。 展开更多
关键词 行人重识别 双链路 全局特征 语义分割 空洞空间卷积金字塔(MASP)
在线阅读 下载PDF
基于上下文信息的遥感图像目标检测 被引量:3
13
作者 梁礼明 李仁杰 +1 位作者 董信 朱晨锟 《电光与控制》 CSCD 北大核心 2023年第10期89-94,共6页
针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感... 针对遥感图像中背景复杂多样、目标密集和尺度差异性大,容易造成小目标漏检和误检的问题,以YOLOv5s算法为网络基础框架,提出一种基于上下文信息的遥感图像目标检测算法。首先,设计上下文模块(CM)并添加在主干网络,增大目标区域特征的感知范围,获取更多的上下文信息,提升模型对小尺度目标的检测能力;其次,在特征主干网络中引入坐标注意力(CA)模块,加强模型对浅层网络中目标位置信息的识别能力;最后,将空间金字塔池化模块替换为空洞空间卷积金字塔(ASPP)模块,实现全局信息和局部信息相融合,进一步增强小目标的语义信息。实验结果表明,在RSOD数据集上,改进后算法的mAP_(50)为97.9%,相比原YOLOv5s算法提高了1.7个百分点;FPS达到71帧/s,满足实时性检测的要求。相比其他检测算法,改进后算法具有更低的漏检率和误检率,检测性能更加优秀。 展开更多
关键词 遥感图像 上下文模块 坐标注意力模块 空洞空间卷积金字塔模块
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部