期刊文献+
共找到472篇文章
< 1 2 24 >
每页显示 20 50 100
融合混合空洞卷积和动态卷积的敦煌壁画修复
1
作者 刘仲民 李耀龙 胡文瑾 《计算机工程与设计》 北大核心 2025年第2期595-602,共8页
为有效修复壁画破损区域的语义信息、解决壁画深层特征信息提取不足导致的修复伪影以及修复失真等问题,提出一种融合混合空洞卷积与动态卷积的敦煌壁画修复模型。针对修复伪影问题,在模型编码阶段设计一种混合残差模块;针对修复失真问题... 为有效修复壁画破损区域的语义信息、解决壁画深层特征信息提取不足导致的修复伪影以及修复失真等问题,提出一种融合混合空洞卷积与动态卷积的敦煌壁画修复模型。针对修复伪影问题,在模型编码阶段设计一种混合残差模块;针对修复失真问题,通过在动态核预测分支和动态语义及图像滤波分支中加入动态卷积来提高网络的预测和滤波性能。实验结果表明,所提模型具有更高的评价指标,且视觉效果上具有更细致的纹理,语义信息更丰富,边缘结构更连贯。 展开更多
关键词 信息处理技术 壁画修复 混合空洞卷积 动态卷积 图像滤波 残差网络 深度学习
在线阅读 下载PDF
融合注意机制的多尺度自适应空洞卷积面部情感识别方法
2
作者 王春影 孟天宇 +2 位作者 张震 葛雄心 杨继伟 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期90-97,共8页
针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale di... 针对面部不连续动作单元的关联特征提取困难,以及不同面部区域对表情识别影响程度不一可能引入无用信息的问题,提出了一种基于双分支注意力机制的多尺度自适应空洞卷积模型(dual branching attention mechanism-adaptive multi-scale dilated convolution,DAM-ADCNN)。模型通过双分支注意力机制生成特征映射,表征面部动作单元的局部和全局分布及关联关系;利用多尺度空洞卷积提取面部不连续动作单元的关键特征;采用自适应方式动态调整不同尺度关联特征的权重,以有效减少无用信息的干扰。结果表明,DAM-ADCNN模型在情感识别任务中的表现优于现有方法。在DEAP数据集的唤醒和效价维度上,模型的识别准确率分别提升了3.66%和3.99%。同时,在CK+数据集上,模型的识别准确率提高了3.93%。这些结果证明了DAM-ADCNN模型在面部表情情感识别中的有效性。 展开更多
关键词 面部情感识别 双分支注意力机制 空洞卷积 自适应权重
在线阅读 下载PDF
基于扩张重参数化和空洞卷积架构的步态识别方法 被引量:2
3
作者 霍丽娜 薛乐仁 +3 位作者 戴钰俊 赵新宇 王世行 王威 《计算机应用》 北大核心 2025年第4期1285-1292,共8页
步态识别旨在通过人们的步行姿态进行身份识别。针对步态识别中有效感受野(ERF)与人体轮廓区域匹配不佳的问题,提出一种基于空洞卷积的步态识别方法DilatedGait。首先,采用空洞卷积扩大神经元感受野,缓解下采样和模型深度增加导致的分... 步态识别旨在通过人们的步行姿态进行身份识别。针对步态识别中有效感受野(ERF)与人体轮廓区域匹配不佳的问题,提出一种基于空洞卷积的步态识别方法DilatedGait。首先,采用空洞卷积扩大神经元感受野,缓解下采样和模型深度增加导致的分辨率下降,以提高轮廓结构的辨识度;其次,提出扩张重参数化模块(DRM),通过重参数化方法融合多尺度卷积核参数,优化ERF聚焦范围,使模型捕获更多的全局上下文信息;最后,通过特征映射提取判别性步态特征。在户外数据集Gait3D和GREW上的实验结果表明,对比目前的先进方法GaitBase,DilatedGait在Gait3D的Rank-1和平均逆负惩罚(mINP)上分别提升了9.0和14.2个百分点,在GREW的Rank-1和Rank-5上分别提升了11.6和8.8个百分点。可见,DilatedGait消除了复杂协变量带来的不利影响,能进一步提升户外场景下步态识别的准确率。 展开更多
关键词 步态识别 有效感受野 重参数化 空洞卷积 步态轮廓序列
在线阅读 下载PDF
基于注意力机制和空洞卷积的无人机图像目标检测 被引量:1
4
作者 赖勤波 马正华 朱蓉 《计算机应用与软件》 北大核心 2025年第2期227-235,共9页
针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两... 针对现有无人机图像目标检测算法存在小目标检测精度低、多尺度目标漏检等问题,提出一种基于通道注意力机制和并行结构空洞卷积特征融合的无人机图像目标检测算法。该算法在ResNet50特征提取网络中引入SENet和PSDCFFN,从通道和感受野两个层面提高算法的特征表达能力,并使用ROI Align代替ROI Pooling,基于K-Means重新设计RPN(Region Proposal Networks)锚框尺寸,减小目标回归过程的坐标偏差。实验表明,该算法能够提升无人机图像目标检测精度,在RSOD-Dataset和无人机图像数据集上,mAP分别达到92.52%和98.07%。 展开更多
关键词 无人机图像 FASTER R-CNN 注意力机制 空洞卷积 特征融合 目标检测
在线阅读 下载PDF
基于多尺度空洞卷积神经网络的滚动轴承故障识别方法
5
作者 汪小虎 赵荣珍 +1 位作者 邓林峰 郑玉巧 《兰州理工大学学报》 北大核心 2025年第3期55-63,共9页
针对现有卷积神经网络模型参数偏多导致滚动轴承智能诊断效率低和识别准确率受限于训练样本数量的问题,提出了基于多尺度空洞卷积神经网络的滚动轴承故障识别方法.该方法首先在模型的输入层采用大尺寸的空洞卷积核和标准卷积核提取一维... 针对现有卷积神经网络模型参数偏多导致滚动轴承智能诊断效率低和识别准确率受限于训练样本数量的问题,提出了基于多尺度空洞卷积神经网络的滚动轴承故障识别方法.该方法首先在模型的输入层采用大尺寸的空洞卷积核和标准卷积核提取一维振动信号的多尺度敏感特征,然后使用尺寸为1×1和3×1的小卷积核以及2×1的最大池化操作对输入层所提取敏感特征进一步提取深层抽象特征,最后用全局平均池化层代替传统卷积神经网络的全连接层.同时,分别采用西储大学轴承故障数据和实验室轴承故障数据进行实验验证.结果表明,该方法泛化性能良好,并且能够在训练样本较少的情况下出色地完成故障识别任务,即使在一定噪声干扰下也能够对轴承微弱故障准确识别. 展开更多
关键词 多尺度空洞卷积神经网络 滚动轴承 故障识别 小样本 微弱故障
在线阅读 下载PDF
基于密集空洞卷积的图像篡改检测与定位算法
6
作者 褚莹娜 张惊雷 贾鑫 《传感器与微系统》 北大核心 2025年第9期129-133,共5页
现有的图像篡改检测方法通常采用连续卷积和上采样来定位图像的篡改区域,容易丢失图像的边缘信息,造成较低的检测性能。提出了一种基于密集空洞卷积(DDC)的图像篡改检测与定位算法。首先,所提出算法采用DDC模块实现图像的特征提取,该模... 现有的图像篡改检测方法通常采用连续卷积和上采样来定位图像的篡改区域,容易丢失图像的边缘信息,造成较低的检测性能。提出了一种基于密集空洞卷积(DDC)的图像篡改检测与定位算法。首先,所提出算法采用DDC模块实现图像的特征提取,该模块可以最大化各卷积层之间的信息流,保留更多的图像边缘信息。另外,所提出算法引入了卷积块注意力模块(CBAM)抑制网络对非篡改区域的学习,从而分辨出隐藏的篡改伪影,提高了检测精度和定位的准确性。在篡改图像数据集CASIA、NIST 16和Columbia上的实验结果表明,所提出方法能够精准地检测与定位图像中被篡改的区域。 展开更多
关键词 图像篡改检测 篡改区域定位 密集空洞卷积 卷积块注意力模块
在线阅读 下载PDF
基于小波分解与动态密集空洞卷积的双分支神经网络水印算法
7
作者 李敬有 席晓天 +1 位作者 魏荣乐 张光妲 《信息网络安全》 北大核心 2025年第5期828-839,共12页
基于深度学习的数字水印算法主要倾向于向载体图像的中高频区域嵌入水印信息,只使用卷积神经网络将水印信息映射到载体图像的特征空间中,忽略了频域算法的作用。文章提出一种基于小波分解与动态密集空洞卷积的双分支神经网络水印算法,... 基于深度学习的数字水印算法主要倾向于向载体图像的中高频区域嵌入水印信息,只使用卷积神经网络将水印信息映射到载体图像的特征空间中,忽略了频域算法的作用。文章提出一种基于小波分解与动态密集空洞卷积的双分支神经网络水印算法,通过使用小波分解,更好地引导水印信息的嵌入和提取。该算法运用离散小波变换处理载体图像与水印图像,将其分解为高频信息和低频信息,再使用神经网络进行针对性学习,使用动态密集空洞卷积在减少神经网络层数的情况下,扩大感受野,增强捕捉全局信息的能力,也能避免使用过多的池化层影响重建图像的质量。实验表明,该算法拥有良好的不可见性和鲁棒性。 展开更多
关键词 双分支神经网络 离散小波变换 空洞卷积 数字水印
在线阅读 下载PDF
基于注意力机制和空洞卷积的CycleGAN煤矿井下低照度图像增强算法 被引量:2
8
作者 王媛彬 郭亚茹 +3 位作者 刘佳 王旭 吴冰超 刘萌 《煤炭科学技术》 CSCD 北大核心 2024年第S2期375-383,共9页
井下环境复杂,充斥着大量粉尘和水汽且人造光源光照不均,导致井下监控设备采集到的图像往往呈现出照度低、细节特征丢失等问题,严重影响了矿业安全监控设备的实时性,不利于后续计算机视觉任务,同时井下数据采集困难,难以制作配对的井下... 井下环境复杂,充斥着大量粉尘和水汽且人造光源光照不均,导致井下监控设备采集到的图像往往呈现出照度低、细节特征丢失等问题,严重影响了矿业安全监控设备的实时性,不利于后续计算机视觉任务,同时井下数据采集困难,难以制作配对的井下低照度图像数据集用于模型训练。针对上述问题,提出了一种基于CycleGAN的低照度图像增强算法。针对矿井下采集配对数据集困难,使用CycleGAN网络进行无监督学习;为改善生成器网络的细节特征提取能力,利用无参注意力机制(simAM)和双通道注意力机制(CBAM)构建图像增强网络,提高复杂背景下模型的抗干扰能力,使模型恢复图像细节特征效果更好;引入由残差空洞卷积构建亮度增强模块,在提升图像亮度的同时增大生成器网络的感受野,有利于细节的恢复,提高图像视觉质量;以Patch-GAN作为网络的判别器,将输入映射成一个矩阵,更加全面的关注到图像不同区域的细节特征,提高判别器对图像细节的分辨能力。实验结果表明,相较于算法CycleGAN,所提方法在峰值信噪比(PSNR)、结构相似度(SSIM)、信息熵和视觉信息保真度(VIF)上平均提高了11.31%、8.07%、2.58%、6.18%。 展开更多
关键词 图像增强 低照度图像 注意力机制 空洞卷积 CycleGAN Patch-GAN
在线阅读 下载PDF
基于混合空洞卷积和注意力多尺度网络的残饵密度估计 被引量:1
9
作者 张丽珍 李延天 +3 位作者 李志坚 孟雄栋 张永琪 吴迪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期137-145,共9页
及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale ne... 及时、准确地估算饵料盘中残留饲料量是提高养殖效益的重要措施。针对虾类养殖场景下残饵检测模型复杂度高、计数精度低的问题,提出了一种基于混合空洞卷积和注意力多尺度网络(hybrid dilated convolution and attention multi-scale network,HAMNet)的残饵密度估计方法。首先,借鉴MCNN(multi-column convolutional neural network)多列架构的思想设计并行卷积块(parallel convolution block,PCB),使网络在单列架构中提取多种尺度的残饵特征,简化了网络结构并减轻了计算量;同时为了弥补网络结构简化造成残饵特征表示能力略有不足的问题,引入混合空洞卷积块(hybrid dilated convolution block,HDCB)避免信息丢失并增大感受野,增强模型深入挖掘多尺度残饵信息的能力。其次,在网络中嵌入通道注意力机制(channel attention mechanism,CAM),利用通道之间的相互依赖性重新校准有用特征信息的权重,凸显目标与背景的差异性。最后,针对下采样导致密度图质量差的问题,应用可学习的转置卷积恢复特征图细节信息,进而提升模型计数性能。利用饵料盘条件下采集的残饵图像进行了验证,试验结果表明,与基准模型MCNN相比,HAMNet模型的平均绝对误差、均方根误差和计算量分别降低了44.4%、40.8%和13.7%,参数量仅为0.52 MB。与经典密度估计模型CMTL(cascaded multi-task learning)、SANet(scale aggregation network)、CSRNet(congested scene recognition network)相比,该模型在各项性能指标上保持了最佳平衡,明显处于优势。该研究可为人工智能在水产养殖中快速量化残饵提供参考。 展开更多
关键词 水产养殖 模型 残饵 密度估计 并行卷积 混合空洞卷积 通道注意力机制 转置卷积
在线阅读 下载PDF
基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断 被引量:4
10
作者 韩康 战洪飞 +1 位作者 余军合 王瑞 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第6期1285-1295,共11页
传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限.针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模... 传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限.针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模型(DC-MAFFM).利用空洞卷积的大感受野提取信号特征,同时引入残差连接来减少卷积层上的信息损失,从而有效过滤信号中的噪声;设计改进的多尺度特征提取模块,在不同尺度上捕获互补的诊断特征,同时在各层都进行不同尺度特征融合,充分学习信号的高频和低频特征;利用提出的特征自适应融合模块对不同尺度的特征自适应赋予权重,增强判别特征学习的能力.在2个轴承数据集上进行验证,结果表明所提模型在噪声和变工况下有较强的诊断能力.在强噪声情况下,故障诊断准确率分别达到88.08%和75.56%,与其他方法相比有显著优势. 展开更多
关键词 故障诊断 空洞卷积 残差连接 多尺度特征提取 自适应融合
在线阅读 下载PDF
基于空洞卷积融合Transformer的无人机图像小目标检测方法 被引量:7
11
作者 王林 刘景亮 王无为 《计算机应用》 CSCD 北大核心 2024年第11期3595-3602,共8页
针对无人机(UAV)航拍图像中目标场景复杂、目标尺度多样、小目标密集和目标遮挡严重的问题,提出一种多尺度空洞卷积的UAV图像目标检测算法Swin-Det。首先,采用Swin Transformer作为主干特征提取网络,并在主干网络中引入空间信息交融模块... 针对无人机(UAV)航拍图像中目标场景复杂、目标尺度多样、小目标密集和目标遮挡严重的问题,提出一种多尺度空洞卷积的UAV图像目标检测算法Swin-Det。首先,采用Swin Transformer作为主干特征提取网络,并在主干网络中引入空间信息交融模块(SIBM),从而解决因物体间遮挡而导致的目标信息模糊的问题;其次,提出一种融合空洞特征金字塔网络(FDFPN),通过多分支的空洞卷积融合特征信息,以有效提高网络的感受野以及特征信息的复用,使模型可以学习到不同维度的细节特征;最后,采用线性插值法和多任务损失函数解决预测区域不匹配和样本不平衡的问题,提升模型的检测精度。在VisDrone数据集上的实验结果表明,Swin-Det算法的平均精度均值(mAP)达到了27.2%,与原始Swin Transformer相比,提高了4.1个百分点,且在同一训练批次下收敛更快。可见,Swin-Det算法可在复杂场景下实现对无人机图像目标的高精度检测。 展开更多
关键词 小目标检测 特征融合 空洞卷积 无人机图像 Swin Transformer
在线阅读 下载PDF
基于变分模态分解与空洞卷积神经网络的配电网故障选线方法 被引量:7
12
作者 李成钢 刘亚东 +4 位作者 杨雪凤 侍哲 于非桐 刘乃毓 罗国敏 《电网与清洁能源》 CSCD 北大核心 2024年第2期110-118,126,共10页
小电流接地系统发生单相接地故障时,零序电流故障特征微弱且繁杂多变,传统选线方法可靠性有待提高。提出了一种基于变分模态分解(variational mode decomposition,VMD)与空洞卷积神经网络的配电网故障选线方法。首先,分析配电网健全线... 小电流接地系统发生单相接地故障时,零序电流故障特征微弱且繁杂多变,传统选线方法可靠性有待提高。提出了一种基于变分模态分解(variational mode decomposition,VMD)与空洞卷积神经网络的配电网故障选线方法。首先,分析配电网健全线路和故障线路的电气特征,采用零序电流作为故障特征信号,为选线模型的输入量提供理论依据;其次,通过变分模态分解把零序电流序列分成不同频率的固有模态函数,提高故障信号特征的平稳性和差异性;然后,采用空洞卷积神经网络作为选线网络,以增大卷积操作感受野的方式增强模型的自适应分类能力;最后,在MATLAB/Simulink中构建10kV配电网进行算例分析,结果表明,该方法在不同故障场景条件下均有较高的选线效果,验证了所提方法的鲁棒性与准确性。 展开更多
关键词 变分模态分解 空洞卷积神经网络 单相接地故障 故障选线 配电网
在线阅读 下载PDF
基于空洞卷积神经网络的红壤有机质含量预测研究 被引量:1
13
作者 邓昀 吴蔚 +1 位作者 石媛媛 陈守学 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2941-2952,共12页
土壤有机质(SOM)含量是衡量土壤肥力的重要指标之一,从高光谱遥感图像中有效预测SOM含量具有重要意义。传统的机器学习方法需要复杂的特征工程且精度不高,而以卷积神经网络(CNN)为代表的深度学习方法在土壤高光谱领域研究较少,且对小样... 土壤有机质(SOM)含量是衡量土壤肥力的重要指标之一,从高光谱遥感图像中有效预测SOM含量具有重要意义。传统的机器学习方法需要复杂的特征工程且精度不高,而以卷积神经网络(CNN)为代表的深度学习方法在土壤高光谱领域研究较少,且对小样本数据建模精度较差,光谱数据的空间特征提取不足。因此,提出了一种使用通道注意力机制的一维空洞卷积网络模型(SE-DCNN)。以广西国有黄冕林场和国有雅长林场采集的207个土壤样本为研究对象,对比分析了3种机器学习方法和4种深度学习方法在不同光谱预处理下的建模效果。结果表明,SE-DCNN模型因为使用了空洞卷积和通道注意力机制,扩大感受野并提取多尺度特征,有较好的建模精确度和泛化拟合能力。最佳预测模型是基于S-G降噪(SGD)和一阶微分(DR)的光谱预处理方式建立的SE-DCNN模型,验证集的决定系数(R^(2))为0.971,均方根误差(RMSE)为2.042 g·kg^(-1),相对分析误差(RPD)为5.273。因此,使用SE-DCNN能够对广西林地红壤有机质含量进行准确预测。 展开更多
关键词 土壤 高光谱 有机质 通道注意力机制 空洞卷积神经网络
在线阅读 下载PDF
基于空洞卷积下采样单元的轻量化害虫图像识别模型 被引量:2
14
作者 孔令旺 赵刚 《江苏农业科学》 北大核心 2024年第11期189-196,共8页
近年来,随着深度学习技术在计算机视觉领域的广泛应用,害虫图像识别成为农业领域中一项重要任务。为了解决害虫图像识别中传统深度学习模型对计算资源和存储空间需求过高的问题,本研究提出一种基于空洞卷积下采样单元的轻量化害虫图像... 近年来,随着深度学习技术在计算机视觉领域的广泛应用,害虫图像识别成为农业领域中一项重要任务。为了解决害虫图像识别中传统深度学习模型对计算资源和存储空间需求过高的问题,本研究提出一种基于空洞卷积下采样单元的轻量化害虫图像识别模型。该模型采用轻量化网络架构,并引入空洞卷积和下采样技术来减小计算量和存储空间。首先,采用MobileNet v2网络来替代VGG16网络,以解决主干特征提取网络参数量过大的问题;其次,设计空洞卷积下采样单元对特征图进行降采样,从而实现模型的多尺度识别;最后,引入空洞卷积更好地捕获不同尺度的感受野。试验结果表明,本研究模型对害虫的识别准确率比VGG16模型提高了1.47%;相较于现有深度学习模型,该模型在减小50%参数量的同时,依然能够保持较高的识别准确率和实时性能。期待本研究模型可以对农业领域中害虫的监测与预警等提供一定的实际应用价值。 展开更多
关键词 空洞卷积下采样单元 轻量化 害虫图像识别 多尺度识别 深度学习
在线阅读 下载PDF
结合空洞卷积与注意力机制的道路提取方法 被引量:1
15
作者 余果 李大成 杨毅 《中国空间科学技术(中英文)》 CSCD 北大核心 2024年第5期175-185,共11页
针对高分辨率影像中道路情况复杂,存在细小道路和被建筑、阴影等隔断道路,导致道路提取精度不高的问题,提出一种结合空洞卷积单元和并行注意力机制模块的改进模型AP-LinkNet。该模型是通过在下采样编码过程中扩大感受野和深层次关注道... 针对高分辨率影像中道路情况复杂,存在细小道路和被建筑、阴影等隔断道路,导致道路提取精度不高的问题,提出一种结合空洞卷积单元和并行注意力机制模块的改进模型AP-LinkNet。该模型是通过在下采样编码过程中扩大感受野和深层次关注道路特征以达到更高的细节道路提取精度。其中空洞卷积模块在扩大感受野的同时不改变空间上像素之间的关系,并行注意力机制提高输入影像采样过程中对通道和空间信息的关注度,并加权赋值给解码步骤的反卷积特征。结合两种机制的特点,减少复杂道路背景的噪声扰乱性以及提高道路提取模型的整体精度。与DeepLabV3+、U-Net、LinkNet和D-LinkNet模型做对比分析,AP-LinkNet模型在DeepGlobe数据集上道路提取的F_(1)分数和IOU评价指标为80.69%和78.65%,其中F_(1)分数分别高出对比模型11.71%、5.24%、3.97%和3.58%。结果表明模型精确度和鲁棒性更高,对于高分影像狭窄、被遮挡等复杂道路细节提取效果好。 展开更多
关键词 深度学习 空洞卷积 并行注意力机制 混合损失函数 卷积神经网络
在线阅读 下载PDF
基于边缘提取与空洞卷积的抓取目标检测算法 被引量:4
16
作者 张晓寒 张文彬 赵景波 《控制工程》 CSCD 北大核心 2024年第2期359-365,共7页
为解决当前工业机器人抓取检测任务中存在的精度不足的问题,提出了一种基于边缘提取与空洞卷积的抓取目标检测算法。该方法以当前较为稳定的YOLOv3网络作为主干网络,进行基于边缘提取的多通道特征融合,添加Edge Feature模块提高网络的... 为解决当前工业机器人抓取检测任务中存在的精度不足的问题,提出了一种基于边缘提取与空洞卷积的抓取目标检测算法。该方法以当前较为稳定的YOLOv3网络作为主干网络,进行基于边缘提取的多通道特征融合,添加Edge Feature模块提高网络的检测精度和检测速度;基于空洞卷积技术优化自适应空间特征融合,形成Dilation-ASFF网络,替换原部分网络,提高网络对多尺度信息的感受能力以及网络检测精度;用CIoU的方法修改抓取框回归损失函数,提高网络的收敛能力与精度。改进后的算法在Cornell抓取检测数据集上的AP达到96.79%,检测速度达到0.063 s/样本,相比于原版YOLOv3网络,AP提高了2.98%。本改进算法在保证检测实时性的基础上,大大提高了检测精度,体现了研究的理论价值和应用价值。 展开更多
关键词 抓取检测 YOLOv3 空洞卷积 边缘提取 CIoU
在线阅读 下载PDF
基于改进可切换空洞卷积的SAR舰船检测算法
17
作者 宋富骏 王金伟 +3 位作者 许京新 王杰坤 赵悦 赵博 《现代雷达》 CSCD 北大核心 2024年第10期65-74,共10页
为解决合成孔径雷达舰船检测在复杂背景、小舰船目标和目标舰船体积相差较大的情况下存在虚警、漏警和置信度偏低的问题,提出了一种基于改进可切换空洞卷积的合成孔径雷达舰船检测算法。通过将ELAN层中的卷积改进为可切换空洞卷积和添... 为解决合成孔径雷达舰船检测在复杂背景、小舰船目标和目标舰船体积相差较大的情况下存在虚警、漏警和置信度偏低的问题,提出了一种基于改进可切换空洞卷积的合成孔径雷达舰船检测算法。通过将ELAN层中的卷积改进为可切换空洞卷积和添加通道注意力机制的方法来扩大卷积层的感受野,高效地聚合网络中不同层的特征信息;在颈部特征融合处加入快速加权特征融合AIFI模块,提高效率并减少模型的冗余计算量;在损失函数处通过构造梯度增益的计算方法来引入聚焦机制。该算法提高了模型检测小目标的能力,并解决了在复杂背景下虚警、漏警的问题;通过使用SSDD数据集对改进后的模型进行验证,相较于改进前的基准YOLO-7模型,改进后的mAP值达到96.59%相较基准模型提升了9.33%,同时准确率和召回率分别提升3.81%和16.36%。实验结果表明,改进后的算法有效提升舰船目标的检测精度,显著改善小目标检测中存在的虚警和漏警问题。 展开更多
关键词 合成孔径雷达 目标识别 可切换空洞卷积 特征融合 通道注意力机制
在线阅读 下载PDF
基于混合空洞卷积CNN和BiGRU的表面肌电信号手势识别
18
作者 张凯 陈峰 《计算机应用与软件》 北大核心 2024年第11期220-227,共8页
针对基于表面肌电信号(sEMG)的手势识别准确率低、计算量大的问题,提出一种基于混合空洞卷积神经网络组合双向门控循环单元与注意力机制(HDC-BiGRU-Attention)的表面肌电信号手势识别方法。相比普通CNN,HDC通过设置奇偶混合且大小不同... 针对基于表面肌电信号(sEMG)的手势识别准确率低、计算量大的问题,提出一种基于混合空洞卷积神经网络组合双向门控循环单元与注意力机制(HDC-BiGRU-Attention)的表面肌电信号手势识别方法。相比普通CNN,HDC通过设置奇偶混合且大小不同的膨胀率,可以扩大感受野,减少过拟合,提取到更多特征。BiGRU模块能很好地提取和处理数据的时序特征,Attention模块为重要特征赋予更大的权重,可以提高准确率。在NinaproDB1数据集和自采数据集上分别实现92.72%和97.85%的准确率。 展开更多
关键词 表面肌电信号 手势识别 混合空洞卷积 双向门控循环单元 Attention机制
在线阅读 下载PDF
基于空洞卷积神经网络的铝硅合金实体关系联合抽取模型(英文)
19
作者 李武亮 邱洪顺 +3 位作者 周治邦 罗光辉 郜洪波 王鸿湫 《材料导报》 EI CAS CSCD 北大核心 2024年第S01期501-511,共11页
近年来,材料基因组计划(Material genome initiative,MGI)已经成为全球热点。随着材料科学的不断发展,材料文献中包含的海量信息成为研究人员关注的焦点,如何获取大量有效的材料数据是现阶段的主要挑战。本文采用自然语言处理(Natural l... 近年来,材料基因组计划(Material genome initiative,MGI)已经成为全球热点。随着材料科学的不断发展,材料文献中包含的海量信息成为研究人员关注的焦点,如何获取大量有效的材料数据是现阶段的主要挑战。本文采用自然语言处理(Natural language processing,NLP)技术从铝硅合金材料文献中获取数据。命名实体识别(Named entity recognition,NER)和关系抽取(Relation extraction,RE)是NLP的两个子任务,可以高效地从文本中提取单词信息及其之间的关系。铝硅合金文献中存在多种命名实体及多种关系,本文从材料科学文献中选择11种实体类型和13种关系类型,手动标注构建了铝硅合金实体关系数据集,将命名实体识别与关系抽取进行联合学习,即对实体识别和关系抽取进行统一建模。此外,针对基础模型的编码层存在捕捉文本语义信息不充分问题,通过改进模型的编码层,将基础模型的BiLSTM层与空洞卷积模型结合,组成了新的编码器,避免了BiLSTM处理文本信息丢失的问题,最终使铝硅合金实体关系联合抽取模型能够更好地捕捉文本中句子的语义单元信息。 展开更多
关键词 材料基因组 铝硅合金文献 实体关系联合抽取 数据集 空洞卷积神经网络
在线阅读 下载PDF
改进U-Net融合空洞卷积的肝脏计算机断层扫描影像分割算法
20
作者 邹倩颖 刘俸宇 《实验室研究与探索》 CAS 北大核心 2024年第9期19-24,共6页
为了提高肝脏计算机断层扫描(CT)影像分割的精度并解决边缘修正不平衡问题,提出一种基于改进U-Net并融合空洞卷积的肝脏CT影像分割算法。通过引入改进注意力特征机制模块增强全局信息,将传统的空洞卷积分解为一维卷积,并结合残差连接来... 为了提高肝脏计算机断层扫描(CT)影像分割的精度并解决边缘修正不平衡问题,提出一种基于改进U-Net并融合空洞卷积的肝脏CT影像分割算法。通过引入改进注意力特征机制模块增强全局信息,将传统的空洞卷积分解为一维卷积,并结合残差连接来强化上下文信息。使用编码器筛选U-Net中的图像信息,将改进的U-Net模块与空洞卷积模块融合,并通过混合池化层进行图像分割。在医学图像分割十项全能肝脏数据集上的实验结果表明,该算法在保留肝脏CT影像边缘信息的精度上优于其他模型,系数D和Q分别为93.98%和96.74%,平均分割时间仅57 ms。 展开更多
关键词 图像分割 空洞卷积 肝脏计算机断层扫描影像 注意力机制
在线阅读 下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部