期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于空时对抗变分自编码器的人群异常行为检测 被引量:4
1
作者 邢天祎 郭茂祖 +3 位作者 陈加栋 赵玲玲 陈琳鑫 田乐 《智能系统学报》 CSCD 北大核心 2023年第5期994-1004,共11页
基于视频的人群异常行为检测对提前发现安全风险、预防群体安全事故发生具有重要价值。针对人群异常行为事件的稀少性导致的无法直接充分学习异常样本的表示、异常事件检测精度低的问题,在变分自编码器基础上,提出一种基于预测的空时对... 基于视频的人群异常行为检测对提前发现安全风险、预防群体安全事故发生具有重要价值。针对人群异常行为事件的稀少性导致的无法直接充分学习异常样本的表示、异常事件检测精度低的问题,在变分自编码器基础上,提出一种基于预测的空时对抗变分自编码器(spatial-temporal adversarial variational autoencoder,STAVAE)视频异常检测模型,通过引入长短期记忆网络(long short-term memory,LSTM)和对抗网络模块,对正常样本视频序列的时间维度与空间维度进行联合特征表示与重构,减少了正常样本重建过程中的特征损失进而扩大了异常样本的预测损失,避免了对异常样本的依赖,实现了基于模型重构误差的人群逃散异常行为检测。在公开数据集UMN及采集视频数据集上进行对比实验,证明ST-AVAE模型在基于监控视频的人群异常逃散行为检测中均具有最优的检测精度和召回率,对抗网络模块显著提升了异常检测的性能。 展开更多
关键词 人群异常行为检测 自编码器 自编码器 长短期记忆网络 对抗网络 空时对抗变分自编码器 重构误差 异常逃散行为
在线阅读 下载PDF
跨域变分对抗自编码器 被引量:1
2
作者 白静 田栋文 +1 位作者 张霖 杨宁 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第9期1402-1410,共9页
现有跨域图像生成算法通常要求用户提供成对数据,且生成能力有限,往往仅支持一对一的跨域图像生成.针对以上问题,提出了一种跨域变分对抗自编码器框架,在不提供任何成对数据的前提下,实现了跨域图像的一对多连续变换.假定来自不同域的... 现有跨域图像生成算法通常要求用户提供成对数据,且生成能力有限,往往仅支持一对一的跨域图像生成.针对以上问题,提出了一种跨域变分对抗自编码器框架,在不提供任何成对数据的前提下,实现了跨域图像的一对多连续变换.假定来自不同域的图像共享相同的内容属性,且拥有独立的风格属性,则跨域图像一对多连续变换问题可转换为图像内容属性和风格属性的解耦、编码、拟合和跨域拼接.首先利用编码器解耦建立跨域数据的内容编码和风格编码;然后利用对抗操作和变分操作分别去拟合图像的内容编码和风格编码;最后通过拼接单域图像的内容编码和风格编码实现图像重构,通过交叉拼接不同域的内容编码和风格编码得到跨域图像的一对多连续变换.在标准数据集MNIST和SVHN上进行的有监督跨域图像生成结果同时满足真实性和多样性,且在分类准确率和域自适应性的定量评价中优于其他跨域图像生成算法;在人脸数据集NIR-VIS和草图数据集Edges-Shoes上实现了无监督跨域图像一对一生成,其可视化结果充分说明了生成图像的特征分布和源特征分布的一致性.以上实验全面验证了变分对抗自编码器框架的可行性和有效性. 展开更多
关键词 跨域图像生成 对抗自编码器 自编码器 有监督学习 无监督学习
在线阅读 下载PDF
基于生成对抗网络和变分自编码器的离群点检测算法 被引量:14
3
作者 金利娜 于炯 +1 位作者 杜旭升 王松 《计算机应用研究》 CSCD 北大核心 2022年第3期774-779,共6页
针对传统离群点检测算法在类极度不平衡的高维数据集中难以学习离群点的分布模式,导致检测率低的问题,提出了一种生成对抗网络(generative adversarial network,GAN)与变分自编码器(variational auto-encoder,VAE)结合的GAN-VAE算法。... 针对传统离群点检测算法在类极度不平衡的高维数据集中难以学习离群点的分布模式,导致检测率低的问题,提出了一种生成对抗网络(generative adversarial network,GAN)与变分自编码器(variational auto-encoder,VAE)结合的GAN-VAE算法。算法首先将离群点输入VAE训练,学习离群点的分布模式;然后将VAE与GAN结合训练,生成更多潜在离群点,同时学习正常点与离群点的分类边界;最后将测试数据输入训练后的GAN-VAE,根据正常点与离群点相对密度的差异性计算每个对象的离群值,将离群值高的对象判定为离群点。在四个真实数据集上与六个离群点检测算法进行对比实验,结果表明GAN-VAE在AUC、准确率和F;值上平均提高了5.64%、5.99%和13.30%,证明GAN-VAE算法是有效可行的。 展开更多
关键词 数据挖掘 离群点检测 生成对抗网络 自编码器
在线阅读 下载PDF
基于双通道变分自编码器的高光谱图像分类
4
作者 刘遵雄 石亚鹏 +1 位作者 彭潇雨 王毅宏 《计算机工程与应用》 CSCD 北大核心 2022年第2期244-251,共8页
针对现有高光谱图像变分自编码器(variational autoencoder,VAE)分类算法存在空间和光谱特征利用效率低的问题,提出一种基于双通道变分自编码器的高光谱图像深度学习分类算法。通过构建一维条件变分自编码器(conditional variational au... 针对现有高光谱图像变分自编码器(variational autoencoder,VAE)分类算法存在空间和光谱特征利用效率低的问题,提出一种基于双通道变分自编码器的高光谱图像深度学习分类算法。通过构建一维条件变分自编码器(conditional variational autoencoder,CVAE)特征提取框架和二维循环通道条件变分自编码(channel-recurrent conditional variational autoencoders,CRCVAE)特征提取框架分别提取高光谱图像的光谱特征和空间特征,将光谱特征向量和空间特征向量叠加形成空谱联合特征向量,将联合特征送入Softmax分类器中进行分类。在Indian pines和Pavia University两种高光谱数据集上进行了分析验证,实验结果显示,与其他算法相比,提出的算法在总分类精度、平均分类精度和Kappa系数等评价指标上至少提高了3.40、2.75和3.57个百分点,结果显示提出的算法得到了最高的分类精度和更好的可视化效果。 展开更多
关键词 深度学习 高光谱图像 自编码器 谱联合特征
在线阅读 下载PDF
基于变分自编码器的谣言立场分类算法 被引量:5
5
作者 郭奉琦 孟凡荣 王志晓 《计算机工程》 CAS CSCD 北大核心 2022年第2期99-105,共7页
针对当前谣言检测任务中社交媒体推特平台的推文数据分布复杂且不均衡的特点,提出基于变分自编码器(VAE)的谣言立场分类算法VAE-LSTM。对数据进行预处理后,利用word2vec模型提取推文词向量并输入VAE中进行训练,得到符合简单概率分布的... 针对当前谣言检测任务中社交媒体推特平台的推文数据分布复杂且不均衡的特点,提出基于变分自编码器(VAE)的谣言立场分类算法VAE-LSTM。对数据进行预处理后,利用word2vec模型提取推文词向量并输入VAE中进行训练,得到符合简单概率分布的深度特征序列再从中采样获取有效特征,以避免数据量较大的推文类别影响特征向量。在此基础上,使用长短时记忆(LSTM)网络处理向量序列数据进而实现分类。理论分析和实验结果表明,VAE-LSTM算法无须手动提取或添加特征,训练过程简单高效,同时能缓解类间不平衡问题,其应用于实际场景准确率和F1得分分别为0.800和0.494,与时序注意力机制算法、Turing算法、霍克斯过程算法等相比分类性能更好,且较SVM等早期机器学习方法节省了大量数据预处理时间。 展开更多
关键词 自编码器 长短记忆网络 社交网络 谣言立场 深度特征
在线阅读 下载PDF
基于变分自编码器的多隐变量双向推理模型 被引量:1
6
作者 赵雁斌 苏锦钿 《计算机科学》 CSCD 北大核心 2023年第10期176-183,共8页
开放域对话系统的关键任务之一是生成丰富多样且连贯的对话回复,但是仅从上文信息进行单向推理无法达到这一目标。针对该问题,提出了基于多隐变量的双向推理模型MLVBI(Multiple Latent Variables Bidirectional Inference)。首先,在语... 开放域对话系统的关键任务之一是生成丰富多样且连贯的对话回复,但是仅从上文信息进行单向推理无法达到这一目标。针对该问题,提出了基于多隐变量的双向推理模型MLVBI(Multiple Latent Variables Bidirectional Inference)。首先,在语言模型中结合变分自动编码器并将单向推理扩充到双向推理,将语料分割为上文、查询与回复后,使用正向推理从查询中推理出回复用于学习正常语序信息,同时使用反向推理从回复中推理出查询用于学习额外主题信息,最后融合成双向推理,使得模型生成更连贯的回复。其次,针对双向推理过程中单个隐变量解释能力不足的问题,引入多个隐变量进一步提高生成对话的多样性。实验结果表明,MLVBI在两个开放域数据集DailyDialog和PersonalChat上的准确性和多样性都达到了当前最佳的效果,并且消融实验也证明了双向推理和多隐变量的有效性。 展开更多
关键词 对话生成 分自编码器 双向推理 长短记忆网络
在线阅读 下载PDF
基于变分自编码器的无监督文本风格转换 被引量:4
7
作者 聂锦燃 魏蛟龙 唐祖平 《中文信息学报》 CSCD 北大核心 2020年第7期79-88,共10页
近年来,文本风格转换作为一种可控的文本生成任务受到学者们越来越多的关注。该文基于变分自编码器模型,通过鉴别器与变分自编码器的对抗性训练,将源端句子的内容和风格在隐变量空间进行分离,从而实现无监督的文本风格转换。针对文本语... 近年来,文本风格转换作为一种可控的文本生成任务受到学者们越来越多的关注。该文基于变分自编码器模型,通过鉴别器与变分自编码器的对抗性训练,将源端句子的内容和风格在隐变量空间进行分离,从而实现无监督的文本风格转换。针对文本语义内容和风格的解纠缠过程中利用固定的二进制向量通过线性变换来对风格进行表征的方法的不足,该文提出更具细腻度的联合表征方法:利用独立的编码器从原句中提取风格的连续隐向量,再和标签向量结合作为最终风格的表征,以提升风格转换的准确率。该文提出的联合表征方法在常用数据集Yelp上进行评测,与两个基线方法相比,风格转换准确率均有显著提升。 展开更多
关键词 文本风格转换 自编码器 对抗性训练 联合表征
在线阅读 下载PDF
基于i向量和变分自编码相对生成对抗网络的语音转换 被引量:2
8
作者 李燕萍 曹盼 +2 位作者 左宇涛 张燕 钱博 《自动化学报》 EI CAS CSCD 北大核心 2022年第7期1824-1833,共10页
提出一种基于i向量和变分自编码相对生成对抗网络的语音转换方法,实现了非平行文本条件下高质量的多对多语音转换.性能良好的语音转换系统,既要保持重构语音的自然度,又要兼顾转换语音的说话人个性特征是否准确.首先为了改善合成语音自... 提出一种基于i向量和变分自编码相对生成对抗网络的语音转换方法,实现了非平行文本条件下高质量的多对多语音转换.性能良好的语音转换系统,既要保持重构语音的自然度,又要兼顾转换语音的说话人个性特征是否准确.首先为了改善合成语音自然度,利用生成性能更好的相对生成对抗网络代替基于变分自编码生成对抗网络模型中的Wasserstein生成对抗网络,通过构造相对鉴别器的方式,使得鉴别器的输出依赖于真实样本和生成样本间的相对值,克服了Wasserstein生成对抗网络性能不稳定和收敛速度较慢等问题.进一步为了提升转换语音的说话人个性相似度,在解码阶段,引入含有丰富个性信息的i向量,以充分学习说话人的个性化特征.客观和主观实验表明,转换后的语音平均梅尔倒谱失真距离值较基准模型降低4.80%,平均意见得分值提升5.12%,ABX值提升8.60%,验证了该方法在语音自然度和个性相似度两个方面均有显著的提高,实现了高质量的语音转换. 展开更多
关键词 语音转换 相对生成对抗网络 I 向量 非平行文本 自编码器 多对多
在线阅读 下载PDF
基于辅助分类器和变分自编码生成对抗网络的干扰识别 被引量:1
9
作者 唐言 赵知劲 +2 位作者 岳克强 郑仕链 王李军 《计算机应用与软件》 北大核心 2023年第12期141-146,共6页
针对基于深度学习干扰识别方法在小样本集情况下性能恶化问题,提出一种基于辅助分类器和变分自编码生成对抗网络(AC-VAEGAN)的干扰识别方法。利用生成对抗网络和变分自编码器的核心思想设计识别模型,得到连续有意义的干扰样本集潜在空间... 针对基于深度学习干扰识别方法在小样本集情况下性能恶化问题,提出一种基于辅助分类器和变分自编码生成对抗网络(AC-VAEGAN)的干扰识别方法。利用生成对抗网络和变分自编码器的核心思想设计识别模型,得到连续有意义的干扰样本集潜在空间;确定编码器、生成器和鉴别器的损失函数,且鉴别器采用动态学习率的优化算法,使得模型训练过程更加有效且稳定。仿真结果表明,在干扰时频图小样本数据集情况下,当干噪比为-10 dB~10 dB时,该方法对宽带噪声干扰、部分频带噪声干扰、单音干扰、多音干扰、脉冲干扰、跳频干扰、线性扫频干扰和二次扫频干扰这八种干扰的正确识别率均高于ACGAN和CNN。 展开更多
关键词 干扰识别 AC-VAEGAN 生成对抗网络 自编码器 频图 小样本数据集
在线阅读 下载PDF
面向认知表现预测的时-空共变混合深度学习模型 被引量:1
10
作者 李晴 徐雪远 邬霞 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期2931-2940,共10页
认知表现预测已经成为当前大脑研究的重要课题.功能磁共振成像技术由于同时具有较好的时间和空间分辨率,有潜力为认知表现预测提供数据支持.为了解决基于功能磁共振成像数据对认知表现进行预测时大脑所具有的时-空共变难刻画问题,提出... 认知表现预测已经成为当前大脑研究的重要课题.功能磁共振成像技术由于同时具有较好的时间和空间分辨率,有潜力为认知表现预测提供数据支持.为了解决基于功能磁共振成像数据对认知表现进行预测时大脑所具有的时-空共变难刻画问题,提出了一种新型基于大脑学习机制的时-空共变混合深度学习模型,即深度稀疏自编码器与循环全连接网络混合模型,以混合神经网络模型的损失函数误差作为认知表现预测能力的评价标准.在人类连接组项目数据集上的实验结果表明,提出的时-空共变混合模型能够有效和稳健地预测认知表现,并提取到与人脑学习、记忆相关的有意义的脑影像特征,从而为认知表现预测提供技术支持. 展开更多
关键词 循环自编码器 -深度学习模型 混合深度学习模型 认知表现预测 脑启发模型
在线阅读 下载PDF
基于图潜向量分布学习的图过采样方法
11
作者 任博 董明刚 +1 位作者 于扬 卢贤睿 《计算机科学与探索》 北大核心 2025年第7期1808-1819,共12页
现实世界中许多图数据存在类别分布不平衡的问题,其通常表现在节点、边和图三个级别。常用的基于过采样的图级不平衡处理方法,因样本缺乏多样性,会导致模型过拟合。针对该问题,提出一种图潜向量分布学习的图过采样方法(GLRD-GAN)。提出... 现实世界中许多图数据存在类别分布不平衡的问题,其通常表现在节点、边和图三个级别。常用的基于过采样的图级不平衡处理方法,因样本缺乏多样性,会导致模型过拟合。针对该问题,提出一种图潜向量分布学习的图过采样方法(GLRD-GAN)。提出一种图潜向量分布学习方法,利用预训练的图变分自编码器(VGAE)和全连接神经网络学习少数类图样本在低维空间内的潜向量分布,在该分布上随机采样潜向量信息并与原少数类潜向量融合,保证了少数类潜向量的多样性。设计了一种基于双解码器的图样本生成器,经预训练的内积解码器和图卷积解码器充分利用采样的潜向量来分别生成图数据的拓扑结构和节点特征。通过GAN判别器检测生成样本的真伪和类别,监督生成样本的有效性,实现多样性的少数类图样本生成。在5个具有代表性的长尾图数据集上进行了对比实验和可视化观察,结果表明提出的基于图潜向量分布学习的图过采样方法在Acc和F1值上较其他方法平均高出1%~4%,且能够生成有效的少数类图样本。 展开更多
关键词 长尾问题 自编码器 图潜向量 生成对抗网络
在线阅读 下载PDF
基于半监督VAE和CGAN的运动想象脑电信号分类器
12
作者 袁凯烽 侯璐 黄永锋 《传感器与微系统》 北大核心 2025年第2期82-86,共5页
由于脑电(EEG)信号的特异性、隐私性,数据集相对匮乏,运动想象EEG(MI-EEG)信号分类是一项具有挑战性的任务。提出了一种基于半监督变分自编码器-条件生成对抗网络(SSVAE-CGAN)模型应用于MI-EEG信号的增强和分类。SSVAE-CGAN模型的SSVAE-... 由于脑电(EEG)信号的特异性、隐私性,数据集相对匮乏,运动想象EEG(MI-EEG)信号分类是一项具有挑战性的任务。提出了一种基于半监督变分自编码器-条件生成对抗网络(SSVAE-CGAN)模型应用于MI-EEG信号的增强和分类。SSVAE-CGAN模型的SSVAE-CGAN的编码器为EEGNet网络,获得MI-EEG信号的时域、频域和空间域的复合特征的潜在空间表示。不同于传统的无监督变分自编码器,在训练编码器时,SSVAE-CGAN使用MI-EEG信号的标签信息以监督的方式更好地构建潜在空间。然后,SSVAE-CGAN使用条件生成对抗网络接收带有标签信息的随机噪声进行生成器-判别器的对抗训练,并生成与潜在空间分布对齐的隐空间。在真实MI-EEG数据集进行了数据增强和分类实验,实验结果验证了本文模型的有效性。 展开更多
关键词 运动想象脑电 数据增强 半监督自编码器 条件生成对抗网络
在线阅读 下载PDF
生成式深度学习在目标导向分子设计中的应用进展
13
作者 王纪峰 汪莹 《中国材料进展》 北大核心 2025年第5期424-435,450,共13页
分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综... 分子设计作为化学与材料科学中的一项核心任务,面临着在庞大的化学空间中高效筛选并开发具备特定功能的分子的问题,传统方法在效率和探索性方面存在明显局限。近年来,生成式深度学习的兴起为分子设计提供了自动化与智能化的新路径。综述了生成式深度学习在分子设计中的应用进展,首先对不同分子表示方法(如SMILES、分子图和三维结构表示)进行比较,分析了各自的优缺点。随后,综合评估了3种主流生成式模型:生成对抗网络(GAN)、变分自动编码器(VAE)和去噪扩散概率模型(DDPM),并探讨了生成式模型在目标导向分子设计中的应用,重点分析不同模型在分子生成质量与性质优化方面的差异。最后,基于现有技术的研究进展,提出了未来生成式模型在分子设计领域的研究方向。 展开更多
关键词 子生成 生成式深度学习 生成对抗网络 分自编码器 去噪扩散概率模型 模型性能评估框架 子表示
在线阅读 下载PDF
基于分布式扰动的文本对抗训练方法
14
作者 沈志东 岳恒宪 《计算机工程》 CAS CSCD 北大核心 2023年第9期16-22,共7页
文本对抗防御旨在增强神经网络模型对不同对抗攻击的抵御能力,目前的文本对抗防御方法通常只能对某种特定对抗攻击有效,对于原理不同的对抗攻击效果甚微。为解决文本对抗防御方法的不足,提出一种文本对抗分布训练(TADT)方法,将TADT形式... 文本对抗防御旨在增强神经网络模型对不同对抗攻击的抵御能力,目前的文本对抗防御方法通常只能对某种特定对抗攻击有效,对于原理不同的对抗攻击效果甚微。为解决文本对抗防御方法的不足,提出一种文本对抗分布训练(TADT)方法,将TADT形式化为一个极小极大优化问题,其中内部最大化的目标是了解每个输入示例的对抗分布,外部最小化的目标是通过最小化预期损失来减小对抗示例的数量,并对基于梯度下降和同义词替换的攻击方法进行研究。在2个文本分类数据集上的实验结果表明,相比于DNE方法,在PWWS、GA、UAT等3种不同的对抗攻击下,TADT方法的准确率平均提升2%,相比于其他方法提升了10%以上,且在不影响干净样本准确率的前提下显著提升了模型的鲁棒性,并在各种对抗攻击下具有较高的准确率,展示了良好的泛化性能。 展开更多
关键词 文本对抗 对抗训练 分自编码器 梯度下降 蒙特卡罗采样
在线阅读 下载PDF
面向天文多普勒差分测速的太阳/行星光谱对生成方法
15
作者 刘劲 徐玉豪 +3 位作者 尤伟 陈晓 张子军 马辛 《宇航学报》 EI CAS CSCD 北大核心 2024年第2期273-282,共10页
为了提供天文多普勒差分测速所需的同步太阳/行星光谱对,提出了一种变分自编码器(VAE)和对偶生成对抗网络(Dual GAN)相融合的VAE-Dual GAN。首先,实测太阳光谱经过VAE编码到隐空间,实现了光谱到光谱域的扩充;然后,由Dual GAN将隐空间映... 为了提供天文多普勒差分测速所需的同步太阳/行星光谱对,提出了一种变分自编码器(VAE)和对偶生成对抗网络(Dual GAN)相融合的VAE-Dual GAN。首先,实测太阳光谱经过VAE编码到隐空间,实现了光谱到光谱域的扩充;然后,由Dual GAN将隐空间映射到伪行星光谱;最后,利用伪行星光谱生成重构太阳光谱。此外,利用编码和生成重建损失加强对网络的约束。VAE-Dual GAN利用Dual GAN的转换学习能力完成了两个光谱域的转换,生成同步太阳/行星光谱对。实验结果表明,VAE-Dual GAN可生成高质量的太阳/行星光谱对,将天文多普勒差分测速精度提高60%以上。 展开更多
关键词 天文导航 测速导航 太阳/行星光谱对 生成对抗网络 自编码器
在线阅读 下载PDF
跨类别样本迁移框架下的不平衡分类方法 被引量:1
16
作者 于海波 刘婧 +3 位作者 李强伟 高欣 谭煌 陈天阳 《计算机工程与应用》 CSCD 北大核心 2024年第16期143-158,共16页
对于不平衡分类问题,实现类别交叠区域中样本数目和分布的平衡是缓解后续决策偏移的关键,而现有的不平衡分类方法往往只从少数类样本生成新样本来达到样本数目的平衡,没有充分利用多数类样本丰富的信息。特别是在少数类样本绝对数量过... 对于不平衡分类问题,实现类别交叠区域中样本数目和分布的平衡是缓解后续决策偏移的关键,而现有的不平衡分类方法往往只从少数类样本生成新样本来达到样本数目的平衡,没有充分利用多数类样本丰富的信息。特别是在少数类样本绝对数量过少的情况下,仅利用原始少数类样本信息无法有效平衡交叠区域样本的分布。提出了一种跨类别样本迁移框架下的不平衡分类方法。在变分自编码器(variational autoencoder,VAE)隐编码采样过程中嵌入由全连接层构建的映射网络,在VAE充分学习不同类别样本的共性和特性的基础上,在隐编码先验约束和跨域一致性约束下对多数类样本的隐编码进行映射转换,使转换前后隐编码共享相同的分布空间,并通过VAE中解码器实现多数类样本向少数类样本的迁移。同时融入生成对抗机制,对原始样本和新样本以及转换前后的隐编码进行判别对抗,进一步提升迁移样本的可靠性。在此基础上,分别对新生成样本与原始不同类别样本的距离进行加权约束,并筛选得到更加靠近交叠区域的样本,使该区域不同类别样本的数目和分布更加平衡。在16个公共数据集上的实验结果表明,在F1测量值和G-均值上该方法显著优于10种典型的不平衡分类方法,特别是在11个不平衡比例较高、少数类样本绝对数量过少的公共数据集中,该方法性能提升更加显著。 展开更多
关键词 不平衡 跨类别样本迁移框架 自编码器 映射网络 生成对抗机制 加权欧式距离约束
在线阅读 下载PDF
农产品市场监测预警深度学习智能预测方法 被引量:1
17
作者 许世卫 李乾川 +3 位作者 栾汝朋 庄家煜 刘佳佳 熊露 《智慧农业(中英文)》 2025年第1期57-69,共13页
[目的/意义]农产品供给、消费和价格的变化直接影响市场监测和预警。随着中国农业生产方式和市场体系的转型,数据获取技术的进步使得农业数据呈现爆炸式增长。然而,农产品多品种的联动监测和预测仍面临数据复杂、模型狭窄、应变能力弱... [目的/意义]农产品供给、消费和价格的变化直接影响市场监测和预警。随着中国农业生产方式和市场体系的转型,数据获取技术的进步使得农业数据呈现爆炸式增长。然而,农产品多品种的联动监测和预测仍面临数据复杂、模型狭窄、应变能力弱等挑战。因此,亟需构建适应中国农业数据特点的深度学习模型,以提升农产品市场的监测与预警能力,推动精准决策和应急响应。[方法]本研究应用深度学习方法,从中国多维农业数据资源实际出发,创新提出了一套不同监测预警对象条件下深度学习综合预测方法,构建了生成对抗与残差网络协同生产量模型(Generative Adversarial Network and Residual Network, GAN-ResNet)、变分自编码器岭回归消费预测模型(Variational Autoencoder and Ridge Regression, VAE-Ridge)、自适应变换器价格预测模型(Adaptive-Transformer)。为适应实际需求,研究在CAMES中采用“离线计算与可视化分离”策略,模型推理离线完成,平衡了计算复杂度与实时预警需求。[结果和讨论]深度学习综合预测方法在玉米单产、生猪消费量和番茄市场价格的预测上,均表现出显著的精度提升。GAN-ResNet生产量预测模型进行县级尺度玉米单产预测的平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)为6.58%,运用VAE-Ridge模型分析生猪消费量的MAPE为6.28%,运用Adaptive-Transformer模型预测番茄价格的MAPE为2.25%。[结论]该研究提出的深度学习综合预测方法,具有较先进的单品种、多场景、宽条件下的农产品市场监测预警分析能力,并在处理不同区域多维数据、多品种替代、市场季节性波动等分析方面显示出优良的指标性能,可为中国农产品市场监测预警提供一套新的有效分析方法。 展开更多
关键词 监测预警 深度学习 生产量预测 消费量预测 价格预测 生成对抗与残差网络协同生产量模型 自编码器岭回归消费预测模型 自适应换器价格预测模型
在线阅读 下载PDF
基于改进GAN的人机交互手势行为识别方法
18
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 自编码器 手势识别 条件批量归一化
在线阅读 下载PDF
计及小概率场景能源管线风险的综合能源系统多目标扩展规划
19
作者 黄南天 赵暄远 +1 位作者 蔡国伟 郭玉 《电气工程学报》 北大核心 2025年第1期197-207,共11页
随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩... 随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩展规划方法。建立基于耦合对抗变分自编码器的场景生成模型,生成冷-热-电-气负荷场景,获取典型场景与小概率高用能场景;在此基础上,以系统扩展规划成本最低及小概率高用能场景能源管线风险最低为目标,建立计及小概率高用能场景的冷-热-电-气综合能源系统扩展规划模型;采用改进麻雀搜索优化算法进行算例求解,实现冷-热-电-气综合能源系统扩展规划,提升综合能源系统扩展规划经济性与运行可靠性。 展开更多
关键词 综合能源系统 扩展规划 小概率高用能场景 耦合对抗自编码器 改进麻雀搜索优化算法
在线阅读 下载PDF
基于VMD和改进Transformer模型的镍镉蓄电池SOH预测研究
20
作者 于天剑 冯恩来 +1 位作者 伍珣 张庆东 《铁道科学与工程学报》 北大核心 2025年第7期3266-3279,共14页
动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode d... 动车组镍镉电池容量表现出非线性特性和“记忆效应”等特征,严重影响传统动车组电池健康状态(state of health,SOH)预测模型的准确性。为准确预测动车组的SOH并提高其蓄电池管理系统的效率和可靠性,基于变分模态分解(variational mode decomposition,VMD)和改进的Transformer模型,提出一种综合预测框架。首先,通过白鲸优化算法(beluga whale optimization,BWO)对VMD的超参数进行优化,利用VMD分解重构准确捕捉电池在其整个生命周期中的容量退化特性,消除蓄电池记忆效应对SOH预测研究带来的不良影响;其次,在Transformer编码模块中嵌入了长短时记忆网络自编码模块(long short-term memory network autoencoder,LSTM Autoencoder),以有效提取电池健康退化的短期特征信息并压缩数据维度,从而降低模型复杂度;最后,将Transformer解码层替换为全连接神经网络,以降低模型复杂度和减少预测误差累积现象,从而提高模型的预测性能和运行效率。并且在验证方案中,以实际动车组蓄电池为研究对象,通过消融实验以及横向对比实验双向证明研究算法具有最高的预测精度,输出预测结果在均方根误差、平均绝对误差相较于其他模型平均降低了60.83%和62.14%,在决定系数上平均提升了6.73%,具有高度的准确性和鲁棒性。可以实现对电池SOH实现精确的预测,对电池健康状态进行有效监控,为电池检修工作提供数据支撑和方法支持。 展开更多
关键词 镍镉蓄电池 SOH预测 模态 长短记忆网络自编码器 改进Transformer模型
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部