期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于光流法预处理和StrongSORT的水稻稻穗追踪计数及穗长提取
1
作者 黄成龙 石宇璇 +2 位作者 王子瑞 苏其贺 杨万能 《农业工程学报》 北大核心 2025年第11期146-155,共10页
为改进传统人工水稻产量检测方法存在接触损伤、主观低效和重复性差等问题,该研究提出了一种基于光流法预处理和StrongSORT的水稻稻穗追踪计数及穗长提取方法。首先,设计试验获取水稻旋转视频数据集,其次,利用Gunnar Farneback光流算法... 为改进传统人工水稻产量检测方法存在接触损伤、主观低效和重复性差等问题,该研究提出了一种基于光流法预处理和StrongSORT的水稻稻穗追踪计数及穗长提取方法。首先,设计试验获取水稻旋转视频数据集,其次,利用Gunnar Farneback光流算法对视频进行预处理以减小遮挡影响,利用卷积模块注意力机制改进YOLOv8-seg网络并对稻穗进行目标检测与分割;最后,基于StrongSORT算法实现稻穗多目标追踪计数,建立运动先验模型增加稻穗目标追踪的匹配次数,改善ID(identity document)跳变问题,同时通过Zhang-Suen骨架提取算法获取稻穗长度。结果表明,在目标检测上,改进的YOLOv8-seg模型平均精度均值为81.1%,相较于原始YOLOv8-seg模型提高了8.7个百分点;经过光流法预处理后的模型平均精度均值为95.0%,与未经过光流法预处理的模型相比提高了13.9个百分点;在稻穗多目标追踪上,光流法预处理+改进的YOLOv8-seg+StrongSORT模型的多目标追踪准确度为85.58%,高阶跟踪精度为64.06%,与YOLOv8-seg+StrongSORT相比,分别提升了11.83和9.53个百分点,ID跳变由891降低至275,降低了69.2%;在计数上,光流法预处理+改进的YOLOv8-seg+StrongSORT模型计数结果与真实值相比,回归性分析模型的决定系数R^(2)为0.9696,平均绝对百分比误差为2.15%,均方根误差为1.87;在穗长提取上,光流法预处理+改进的YOLOv8-seg+StrongSORT模型提取结果与真实值相比,回归性分析模型的决定系数R^(2)为0.9408,平均绝对百分比误差为4.07%,均方根误差为0.47。本研究可以降低各个重叠稻穗间的干扰,提高检测准确度和多目标追踪精度,减少了大部分ID跳变问题,为稻穗追踪计数和长度测量提供了一种新的技术途径。 展开更多
关键词 水稻 目标追踪计数 光流法 StrongSORT 稻穗长度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部