期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于信号分解与分类建模的HRG稳定期预测
1
作者 李新三 李灿 +2 位作者 沈强 汪立新 王海洋 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第12期3729-3738,共10页
为准确预测半球谐振陀螺(HRG)输出稳定期,提出基于信号分解与分类建模的稳定期预测方法。针对HRG高可靠、长期稳定特点引起的样本变化规律不明显问题,使用具有频率显微镜能力的互补集合经验模态分解(CEEMD)算法对输出进行分解,得到不同... 为准确预测半球谐振陀螺(HRG)输出稳定期,提出基于信号分解与分类建模的稳定期预测方法。针对HRG高可靠、长期稳定特点引起的样本变化规律不明显问题,使用具有频率显微镜能力的互补集合经验模态分解(CEEMD)算法对输出进行分解,得到不同频率尺度的信号分量;采用增广Dickey-Fuller(ADF)检验方法对分量信号进行平稳性检验,对于平稳分量建立自回归滑动平均(ARMA)预测模型,对于非平稳分量建立熵-径向基(RBF)神经网络模型。在时间对齐后,分量信号重构得到陀螺输出预测模型。设计陀螺输出稳定标准,给定基于输出预测的稳定期预测流程。经实验验证,组合模型预测平均相对误差仅为1.29%,比自回归积分滑动平均模型(ARIMA)误差减小了1个数量级,比熵-RBF神经网络模型误差减小了约1倍,验证了信号分解与分类建模方法的有效性与高精度。基于陀螺预测输出对陀螺稳定期进行预测,得到了实验陀螺输出稳定期约为3.95年的结论,与实际应用中相一致,说明所提方法的可行性。 展开更多
关键词 半球谐振陀螺 稳定期预测 互补集合经验模态分解 分类建模 熵-RBF神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部