In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most crit...In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over.展开更多
Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic ...Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic zone integration requires a larger rock pillar distance of theses adjacent caverns while eco- nomic and access reasons require smaller distance. In lran many underground projects are located in West and South West, Asmari formation covers a large part of these regions. The stability of underground spaces that are constructed or will be constructed in this formation has been investigated. A proper cross section based on plastic analysis and a stability criterion has been proposed for each region. Finally, in each case, allowable rock pillar between adjacent caverns with similar dimension was determined with two methods (numerical analysis and fire service law). Results show that Fire Service Law uses a very con- servative safety factor and it was proposed to use a correction factor for allowable distance based on application of underground space.展开更多
文摘In open-pit mines,pit slope as one of the important parameters affects the mine economy and total minable reserve,and it is also affected by different uncertainties which arising from many sources.One of the most critical sources of uncertainty effects on the pit slope design is rock mass geomechanical properties.By comparing the probability of failure resulted from deterministic procedure and probabilistic one,this paper investigated the effects of aforesaid uncertainties on open-pit slope stability in metal mines.In this way,to reduce the effect of variance,it implemented Latin Hypercube Sampling(LHS)technique.Furthermore,a hypothesis test was exerted to compare the effects on two cases in Middle East.Subsequently,the investigation approved high influence of geomechanical uncertainties on overall pit steepness and stability in both iron and copper mines,though on the first case the effects were just over.
文摘Large underground caverns are commonly used in variety of applications. In many cases, because of the geomechanical limitations of dimensions and requirement of high volume, several parallel caverns are used. Plastic zone integration requires a larger rock pillar distance of theses adjacent caverns while eco- nomic and access reasons require smaller distance. In lran many underground projects are located in West and South West, Asmari formation covers a large part of these regions. The stability of underground spaces that are constructed or will be constructed in this formation has been investigated. A proper cross section based on plastic analysis and a stability criterion has been proposed for each region. Finally, in each case, allowable rock pillar between adjacent caverns with similar dimension was determined with two methods (numerical analysis and fire service law). Results show that Fire Service Law uses a very con- servative safety factor and it was proposed to use a correction factor for allowable distance based on application of underground space.