期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
基于改进降噪自编码器与稠密连接网络的局部放电声信号模式识别 被引量:1
1
作者 关宇 董明 +3 位作者 王腾腾 刘胤康 胡一卓 金凯 《高电压技术》 北大核心 2025年第1期478-487,共10页
针对变电站开放空间中现场噪声显著及随机性强等特点,提出了基于改进降噪自编码器与稠密连接网络的局部放电声学模式识别方法。首先将局部放电声信号提取特征频段;通过建立改进降噪自编码器提取信号的潜在特征;之后采用格拉姆角场变换... 针对变电站开放空间中现场噪声显著及随机性强等特点,提出了基于改进降噪自编码器与稠密连接网络的局部放电声学模式识别方法。首先将局部放电声信号提取特征频段;通过建立改进降噪自编码器提取信号的潜在特征;之后采用格拉姆角场变换将潜在特征序列二维化,建立局部放电特征图谱数据集;在此基础上,构建了稠密连接网络辨识模型对局部放电声信号图谱进行模式识别,在随机低信噪比条件下实现了局部放电类型的准确识别与诊断。由压电式声传感器采集了4种典型缺陷电极模型的局部放电声信号,并对随机低信噪比的局部放电声信号进行模式识别。结果表明,与直接采用局部放电声学数据构建识别模型和采用传统降噪自编码器进行数据降维等方法相比较,该方法模式识别准确度更高,可达到98.6%。 展开更多
关键词 局部放电 声学信号 模式识别 降噪自编码器 稠密连接网络
在线阅读 下载PDF
基于稠密连接网络的单矢量水听器目标方位估计
2
作者 柯凯磊 孙德龙 《舰船科学技术》 北大核心 2024年第12期132-139,共8页
将方位估计问题看成多标签分类问题,将稠密连接网络应用于单矢量水听器目标方位估计,使用经典方法中广泛关注的二阶统计量作为神经网络的输入,使用不断生成训练集的方法训练神经网络。仿真及湖试结果表明,使用稠密连接网络相较经典方法... 将方位估计问题看成多标签分类问题,将稠密连接网络应用于单矢量水听器目标方位估计,使用经典方法中广泛关注的二阶统计量作为神经网络的输入,使用不断生成训练集的方法训练神经网络。仿真及湖试结果表明,使用稠密连接网络相较经典方法具有更窄的主瓣和更高的方位分辨力;在2个目标信噪比相差6 dB及以上的情况下,稠密连接网络具备经典方法没有的同时检测2个目标的能力,且仍具有优秀的方位分辨力;当2个目标信噪比相差大于18 dB后稠密连接网络逐渐丧失了对弱目标的检测能力。 展开更多
关键词 稠密连接网络 单矢量水听器 波达方位估计 方位分辨力 信噪比
在线阅读 下载PDF
基于注意机制的轻量化稠密连接网络单幅图像去雨 被引量:4
3
作者 柴国强 王大为 +1 位作者 芦宾 李竹 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第11期2186-2192,共7页
图像中附着的雨条纹对背景造成的破坏严重影响了对图像信息的分析和后续研究。为了恢复被雨条纹破坏的背景纹理特征,提出一种基于注意机制的轻量化稠密连接网络针对单幅图像进行去雨。注意机制有利于网络准确定位降雨区域,稠密连接网络... 图像中附着的雨条纹对背景造成的破坏严重影响了对图像信息的分析和后续研究。为了恢复被雨条纹破坏的背景纹理特征,提出一种基于注意机制的轻量化稠密连接网络针对单幅图像进行去雨。注意机制有利于网络准确定位降雨区域,稠密连接网络的使用增强了特征的复用,缓解了梯度消失和模型退化问题。利用多尺度通道混洗深度可分离卷积实现网络轻量化设计,降低了网络参数规模,提升了网络运行效率。在合成数据集和真实数据集上的去雨结果表明,所提算法在定量指标和定性分析上都优于现有算法。 展开更多
关键词 注意机制 稠密连接网络 轻量化设计 图像去雨 深度学习
在线阅读 下载PDF
采用改进稠密连接网络的防风药材的道地性识别 被引量:3
4
作者 李东明 汤鹏 +2 位作者 张丽娟 雷雨 刘双利 《农业工程学报》 EI CAS CSCD 北大核心 2022年第3期276-285,共10页
目前市场上对防风药材的质量鉴定,仍停留在依靠专业人员的自身经验,对药材表型观察进行划分定级,这样的做法具有一定的主观性和局限性。针对上述问题,该研究建立具有18543张包含5个主要产区防风药材图像的标准数据集,并基于深度学习的... 目前市场上对防风药材的质量鉴定,仍停留在依靠专业人员的自身经验,对药材表型观察进行划分定级,这样的做法具有一定的主观性和局限性。针对上述问题,该研究建立具有18543张包含5个主要产区防风药材图像的标准数据集,并基于深度学习的方法改进稠密连接网络来区分防风药材的产地,对防风药材品质进行精确、高效的智能分类,判断防风药材的道地性及品质优劣。该神经网络的具体建立过程为:首先对残差模块进行优化改进,将协调注意力(Coordinate Attention,CA)模型与残差模块进行融合,以增加特征图中待识别区域的特征权值,降低背景信息对识别任务的干扰;然后将改进的残差模块嵌入到稠密连接网络,以减少模型运算参数、增强网络对特征信息的高效利用能力;最后重构全连接层,来适应对数据集的识别分类,并增强网络的学习能力。在迁移学习和数据扩充方式下新模型的识别准确率可达97.23%;且训练约48轮便可达到收敛状态,极大地提高了收敛速度。该方法能够高效准确地识别防风药材的产地及道地性并有较强的鲁棒性,可为防风药材质量智能鉴定提供参考。 展开更多
关键词 图像处理 特征提取 稠密连接网络 协调注意力机制 防风药材 道地性药材
在线阅读 下载PDF
基于稠密连接网络的地下水污染替代模型研究 被引量:2
5
作者 江思珉 孔维铭 +3 位作者 吴延浩 刘金炳 张春秋 夏学敏 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2023年第2期229-237,共9页
地下水污染溯源和含水层参数反演问题等地下水逆问题通常面临计算负荷量的制约,考虑使用替代模型作为解决方法,从而降低地下水反演问题的计算成本。借鉴卷积神经网络的图像识别过程,考虑将地下水流运动和污染物运移问题转化为输入场图像... 地下水污染溯源和含水层参数反演问题等地下水逆问题通常面临计算负荷量的制约,考虑使用替代模型作为解决方法,从而降低地下水反演问题的计算成本。借鉴卷积神经网络的图像识别过程,考虑将地下水流运动和污染物运移问题转化为输入场图像(渗透系数场、污染源信息等)与输出场图像(水头场、浓度场等)之间函数关系的图像回归问题,利用基于稠密连接网络的AR-Net-WL构建地下水流运动和污染物运移的替代模型。算例研究表明,针对替代模型的过拟合现象,尽可能选择较大的训练样本可获得约10%的精度提升;当没有条件增加训练样本时,采用最优正则项系数的AR-Net-WL在训练样本较少的情形下(训练样本500)也能够取得良好的性能,能够精确预测地下水流运动和污染物运移。 展开更多
关键词 地下水污染 替代模型 地下水逆问题 深度学习 稠密连接网络
在线阅读 下载PDF
基于侧链连接卷积神经网络的手掌静脉图像识别 被引量:2
6
作者 娄梦莹 王天景 +2 位作者 刘娅琴 杨丰 黄靖 《计算机应用》 CSCD 北大核心 2020年第12期3673-3678,共6页
针对手掌静脉图像数量少且质量参差不齐,进而导致掌脉识别系统的性能降低的现象,提出一种基于侧链连接卷积神经网络的手掌静脉图像识别方法。首先,在ResNet模型的基础上,用卷积层和池化层提取掌脉特征。然后,采用指数线性单元(ELU)激活... 针对手掌静脉图像数量少且质量参差不齐,进而导致掌脉识别系统的性能降低的现象,提出一种基于侧链连接卷积神经网络的手掌静脉图像识别方法。首先,在ResNet模型的基础上,用卷积层和池化层提取掌脉特征。然后,采用指数线性单元(ELU)激活函数、批归一化(BN)和Dropout技术来改进和优化模型,以缓解梯度消失、防止过拟合、加快收敛及增强模型泛化能力。最后,引入稠密连接网络(DenseNet),使提取到的手掌静脉特征更具丰富性和有效性。在两个公开库和一个自建库上分别进行实验,结果表明所提方法在三个数据库上的识别率分别为99.98%、97.95%、97.96%。可见该方法能有效提高掌脉识别系统的性能,且更适用于掌脉识别的实际应用。 展开更多
关键词 手掌静脉识别 ResNet 指数线性单元激活函数 批归一化 DROPOUT 稠密连接网络
在线阅读 下载PDF
改进DenseNet的干气密封摩擦润滑状态识别研究
7
作者 张帅 丁雪兴 +2 位作者 王世鹏 力宁 张兰霞 《振动与冲击》 北大核心 2025年第4期313-321,共9页
为了克服干气密封运行中端面接触状态参数(膜厚、端面开启时间)测量困难的问题,提出自注意力机制融合稠密连接网络(DenseNet-convolutional block attention module,DenseNet-CBAM)的干气密封端面摩擦润滑状态识别方法。根据斯特里贝克... 为了克服干气密封运行中端面接触状态参数(膜厚、端面开启时间)测量困难的问题,提出自注意力机制融合稠密连接网络(DenseNet-convolutional block attention module,DenseNet-CBAM)的干气密封端面摩擦润滑状态识别方法。根据斯特里贝克曲线和干气密封运行规律分析端面可能出现的摩擦润滑状态:流体润滑,边界润滑、混合润滑。通过声发射传感器采集密封系统运行时的声发射信号,通过滤波、时域分析、频域分析得出能够表征各种摩擦润滑状态的特征分量,获取三维连续小波(3D continuous wavelet transform,3D-CWT)时频图,最终基于深度学习模型Densenet-CBAM识别时频图,实现密封系统摩擦润滑状态识别。与其他二维时频特征图作为输入端相比,3D-CWT时频图提高了状态识别的准确率。同时,相较于其他深度学习模型,该方法对干气密封摩擦润滑状态识别精度高,达到了99.27%。 展开更多
关键词 干气密封 稠密连接网络 自注意力机制 声发射 状态识别
在线阅读 下载PDF
结合亮度约束的双分支结构暗光图像增强算法
8
作者 杨海潮 李新凯 +1 位作者 张宏立 孟月 《计算机工程与应用》 北大核心 2025年第8期250-259,共10页
暗光图像增强是图像处理中的一个重要问题,其算法性能会影响人眼视觉感知与后续计算机视觉任务,但现有暗光图像增强算法存在内容信息保留与亮度提升平衡性不好的问题。针对此问题,基于CycleGAN提出一种结合亮度约束的双分支结构暗光图... 暗光图像增强是图像处理中的一个重要问题,其算法性能会影响人眼视觉感知与后续计算机视觉任务,但现有暗光图像增强算法存在内容信息保留与亮度提升平衡性不好的问题。针对此问题,基于CycleGAN提出一种结合亮度约束的双分支结构暗光图像增强算法。该算法利用Retinex理论思想,将暗光增强任务解耦为内容信息保留与亮度增强两个子任务。构建双分支结构生成器,利用多尺度卷积与稠密连接网络构建内容特征提取分支网络来处理内容信息保留任务;利用空洞卷积与风格校准注意力机制构建亮度均衡分支网络并结合亮度约束来处理亮度增强任务。通过特征融合模块将两个分支网络的输出结果进行融合与解码,得到增强后的图像。此外,通过亮度响应函数来扩充暗光图像数据集,增加训练数据的多样性。实验结果表明:相比于当前主流算法,该算法增强后的暗光图片具有更好的人眼主观视觉效果,同时在PSNR、SSIM、NIQE、Histogram等客观评价指标上也具有明显优势。 展开更多
关键词 暗光图像增强 循环生成对抗网络 双分支结构 稠密连接网络
在线阅读 下载PDF
卷积神经网络物体检测算法在物流仓库中的应用 被引量:15
9
作者 李天剑 黄斌 +1 位作者 刘江玉 金秋 《计算机工程》 CAS CSCD 北大核心 2018年第6期176-181,共6页
针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注... 针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注的托盘数据库进行训练和测试。在测试阶段,结合不同分辨率的多尺度特征图,以增强网络对被检测物体的适应能力,并使用单一网络实现检测任务。实验结果表明,与YOLO算法相比,该算法检测准确率提高了6.1%。 展开更多
关键词 物体检测 托盘检测 卷积神经网路 深度学习 稠密连接卷积神经网络
在线阅读 下载PDF
DenseNet生成对抗网络低照度图像增强方法 被引量:13
10
作者 王照乾 孔韦韦 +1 位作者 滕金保 田乔鑫 《计算机工程与应用》 CSCD 北大核心 2022年第8期214-220,共7页
针对低照度环境下采集图像存在低信噪比、低分辨率和低照度的问题,提出了一种基于稠密连接网络(DenseNet)生成对抗网络的低照度图像增强方法。利用DenseNet框架建立生成器网络,并将PatchGAN作为判别器网络;将低照度图像传入生成器网络... 针对低照度环境下采集图像存在低信噪比、低分辨率和低照度的问题,提出了一种基于稠密连接网络(DenseNet)生成对抗网络的低照度图像增强方法。利用DenseNet框架建立生成器网络,并将PatchGAN作为判别器网络;将低照度图像传入生成器网络生成照度增强图像,同时利用判别器网络负责监督生成器对低照度图像的增强效果,通过生成器和判别器二者间的博弈不断优化网络权重,最终使得生成器对低照度图像具有较好的增强效果。实验结果表明,该方法与现有主流方法相比较,不仅在对低照度图像亮度增强、清晰度还原等方面优势明显,且在峰值信噪比和结构相似度等图像质量客观评价指标方面也具有显著的优势。 展开更多
关键词 低照度图像增强 生成对抗网络 稠密连接网络 PatchGAN
在线阅读 下载PDF
基于雨雾分离处理和多尺度网络的图像去雨方法
11
作者 韦豪 李洪儒 +1 位作者 邓国亮 周寿桓 《计算机应用研究》 CSCD 北大核心 2023年第1期283-287,共5页
雨带来的雨条纹和雨雾会降低户外拍摄图像的质量,为了去除雨雾对图像的影响,提出了一种基于雨雾分离处理和多尺度卷积神经网络的图像去雨方法。首先利用导向滤波将雨线和图像细节信息提取到高频层,雨雾和背景信息则分离到低频层;然后构... 雨带来的雨条纹和雨雾会降低户外拍摄图像的质量,为了去除雨雾对图像的影响,提出了一种基于雨雾分离处理和多尺度卷积神经网络的图像去雨方法。首先利用导向滤波将雨线和图像细节信息提取到高频层,雨雾和背景信息则分离到低频层;然后构建多尺度卷积神经网络来去除高频层中的雨线,网络中融入多个稠密连接模块以提升特征提取的准确性;其次构建多层特征融合的轻量级去雾网络来去除低频层中的雨雾,采用参数一体化结构避免了估计多个大气散射模型参数导致的次优解;最后再结合处理后的高低频结果还原出清晰图像。在多个合成的雨雾数据集以及真实自然场景图像上进行测试,定性和定量结果表明,提出的方法在去除雨雾影响的同时较好地保留了色彩信息,和近年的算法相比,图像结构相似性提升了0.02~0.08,图像峰值信噪比提升了0.2~3.5 dB。 展开更多
关键词 图像去雨 雨雾分离处理 导向滤波 稠密连接网络 深度学习
在线阅读 下载PDF
DenseNet-centercrop:一个用于肺结节分类的卷积网络 被引量:6
12
作者 刘一璟 张旭斌 +3 位作者 张建伟 周哲磊 冯元力 陈为 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2020年第1期20-26,共7页
为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了Den... 为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了DenseNet的结构,而且将其稠密连接机制扩展到了稠密块水平,大大丰富了肺结节的多尺度特征。(2)参数量较少,是一种轻量化的网络结构。将基于该网络的肺结节良恶性分类方法在LIDC-IDRI数据集上进行评估,实验结果表明,DenseNet-centercrop极大地提高了DenseNet的性能,较现有的其他肺结节良恶性分类方法具有更高的AUC分值和分类精度。 展开更多
关键词 肺结节分类 电子计算机断层扫描图像 稠密连接卷积网络
在线阅读 下载PDF
基于DSC-DenseNet的流程工业系统故障监测
13
作者 汪凯 亚森江·加入拉 《机床与液压》 北大核心 2024年第7期226-230,共5页
田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题。为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参... 田纳西-伊士曼过程数据高纬度、高耦合,存在数据特征难以提取的问题。为进一步提高流程工业系统中故障监测的识别率,现将一维稠密卷积网络(1D-DenseNet)与深度可分离卷积(DSC)结合,利用DenseNet的高效特征提取能力,并结合DSC减少计算参数、提高诊断效率,以提供基于DSC-DenseNet的故障监测方式。先将数据进行归一化整理,并加入随机种子避免过拟合,随后将处理后的结果作为DSC-DenseNet的输入进行特征提取,然后将输出结果传入全连接层进行故障分类;最后在TEP数据集上进行准确率测试。结果证明:基于DSC-DenseNet的方法能有效分辨故障类型,故障分类准确率达到98.8%。并证明DSC-DenseNet比传统DenseNet有更好的故障识别效果。 展开更多
关键词 稠密连接网络 深度可分离卷积 故障诊断 田纳西伊士曼过程
在线阅读 下载PDF
基于RetinaNet的水下机器人目标检测 被引量:4
14
作者 陈伟 魏庆宇 +1 位作者 张境锋 郭碧宇 《计算机工程与设计》 北大核心 2022年第10期2959-2967,共9页
为解决水下机器人目标检测效率低且环境适应力差的问题,提出一种基于改进的Retina网络水下机器人目标检测方法。采用Dense Net替代Res Net构建骨干网络,使用卷积层堆叠代替原始单次卷积操作,减轻网络重量。以海参为典型研究目标,实验结... 为解决水下机器人目标检测效率低且环境适应力差的问题,提出一种基于改进的Retina网络水下机器人目标检测方法。采用Dense Net替代Res Net构建骨干网络,使用卷积层堆叠代替原始单次卷积操作,减轻网络重量。以海参为典型研究目标,实验结果表明,所提方法能够正常运行在水下机器人上,相比之前基于机器视觉的目标检测方法,检测精度提高约23%,运行速度提高约17%,在运行速度与检测精度上优于一些基于卷积神经网络的常见目标检测算法。 展开更多
关键词 目标检测 水下机器人 视网膜网络 稠密连接网络 卷积层堆叠
在线阅读 下载PDF
基于深度学习的拉削刀具磨损状态识别模型 被引量:1
15
作者 应申舜 傅晨泰 +3 位作者 林绿胜 吕晓敏 张顺琦 易凯 《高技术通讯》 CAS 2022年第10期1089-1100,共12页
拉削是航空发动机涡轮盘榫槽的关键加工工艺,拉刀在工作过程中的异常状态若不能被及时发现并加以干预,将引起严重的破坏,目前尚无先进的人工智能方法解决这一问题。本文提出了一种拉削刀具磨损状态识别模型(DSBiLSTM),该模型基于具有特... 拉削是航空发动机涡轮盘榫槽的关键加工工艺,拉刀在工作过程中的异常状态若不能被及时发现并加以干预,将引起严重的破坏,目前尚无先进的人工智能方法解决这一问题。本文提出了一种拉削刀具磨损状态识别模型(DSBiLSTM),该模型基于具有特征重用优势的稠密连接网络(DenseNet)设计了DenseNet(3-2),实现空间特征提取和降维,并设计了堆叠的双向长短期记忆网络(SBiLSTM),实现时序特征提取,两者优势互补,将多尺度融合提取特征纳入到多个全连接层(FNN)和Softmax层,实现刀具磨损状态识别。基于创新的识别模型,设计了涡轮盘榫槽拉削加工实验,采用了基于混淆矩阵的性能指标体系,将所提出的模型与单个特征提取模型进行比较。实验结果表明,DSBiLSTM模型在刀具磨损状态预测中具有突出性能,识别准确率达到98.73%,单个样本的识别速度提高到11 ms。 展开更多
关键词 深度学习 拉削加工 刀具磨损 状态识别 稠密连接网络(DenseNet) 长短期记忆网络(LSTM)
在线阅读 下载PDF
基于VMD和改进DenseNet的滚动轴承故障诊断 被引量:8
16
作者 董路南 邓艾东 +1 位作者 范永胜 刘洋 《动力工程学报》 CAS CSCD 北大核心 2023年第11期1500-1505,1522,共7页
针对传统故障诊断方法抗噪性能差,对振动信号中的故障信息挖掘不充分的问题,提出了一种基于变分模态分解(VMD)与改进的稠密连接网络(DenseNet)相结合的滚动轴承故障诊断模型。首先利用VMD将含有噪声的振动信号分解为多个本征模态分量,... 针对传统故障诊断方法抗噪性能差,对振动信号中的故障信息挖掘不充分的问题,提出了一种基于变分模态分解(VMD)与改进的稠密连接网络(DenseNet)相结合的滚动轴承故障诊断模型。首先利用VMD将含有噪声的振动信号分解为多个本征模态分量,选取与原始信号相关性较大的若干分量并重构,得到降噪后的信号。然后将重构信号送入DenseNet网络中提取特征,并通过增加通道注意力机制对提取的不同特征赋予不同的权重,进一步强化特征的区分度。最后,通过Softmax层完成故障分类。结果表明:该模型对含有不同强度噪声的振动信号均能有效提取故障特征,具有良好的诊断性能。 展开更多
关键词 变分模态分解 稠密连接网络 降噪 通道注意力机制 故障诊断
在线阅读 下载PDF
基于贝叶斯优化FCN-DenseNet算法的供水管网爆管智能识别 被引量:6
17
作者 彭森 程蕊 +2 位作者 程景 吴卿 田一梅 《安全与环境学报》 CAS CSCD 北大核心 2022年第1期306-315,共10页
为了进一步拓展深度学习算法在供水管网爆管分析中的适用范围,提出了一种爆管区域识别方法。基于全连接稠密网络算法(Full Connect Network-DenseNet,FCN-DenseNet)构建了爆管区域识别模型,提取不同区域的爆管特征。同时,采用贝叶斯优... 为了进一步拓展深度学习算法在供水管网爆管分析中的适用范围,提出了一种爆管区域识别方法。基于全连接稠密网络算法(Full Connect Network-DenseNet,FCN-DenseNet)构建了爆管区域识别模型,提取不同区域的爆管特征。同时,采用贝叶斯优化算法对识别模型的超参数组合进行优化和自动选取。以华东某园区的部分供水管网为研究对象,在建立水力模型的基础上,通过布置监测点和划分监测分区形成管网监测方案。综合考虑爆管位置、时间、流量、监测噪声及研究区域管网实际情况等因素,进行爆管工况模拟,建立爆管数据集,对识别模型进行训练和验证。结果表明,在验证数据集下,爆管区域平均识别率φ_(1)、φ_(2)分别可以达到93.5%、96.7%。贝叶斯优化的FCN-DenseNet算法增强了模型的性能和适用性,管网监测分区爆管可能性排序能够指导水司进行爆管分析和巡检。 展开更多
关键词 安全管理工程 供水管网 爆管识别 管网分区 连接稠密网络 贝叶斯优化
在线阅读 下载PDF
多通道CartoonGAN下的图像风格动漫化 被引量:2
18
作者 乔平安 李静文 曹家亮 《计算机应用研究》 CSCD 北大核心 2021年第11期3517-3520,共4页
为解决真实图像转换为动漫风格图像出现的参数量大、图像纹理和颜色损失的问题,提出了一种多通道卡通生成对抗网络(MC_CartoonGAN)。首先,使用HSCNN+(advanced CNNs for the hyperspectral reconstruction task)和遗传算法重新构建多通... 为解决真实图像转换为动漫风格图像出现的参数量大、图像纹理和颜色损失的问题,提出了一种多通道卡通生成对抗网络(MC_CartoonGAN)。首先,使用HSCNN+(advanced CNNs for the hyperspectral reconstruction task)和遗传算法重新构建多通道图像数据集,丰富图像信息。其次,利用DenseNet网络进行特征复用减少参数的内存占用率及缓解梯度消失的问题。最后,引入多通道颜色重建损失函数,在保证了生成图像内容完整的情况下,降低了生成图像的颜色损失。实验结果表明,提出的多通道卡通生成对抗网络将真实图像转换成动漫风格图像的质量更优。 展开更多
关键词 生成对抗网络 稠密连接网络 多通道 图像风格动漫化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部