期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DenseNet-centercrop:一个用于肺结节分类的卷积网络 被引量:6
1
作者 刘一璟 张旭斌 +3 位作者 张建伟 周哲磊 冯元力 陈为 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2020年第1期20-26,共7页
为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了Den... 为解决由肺部CT图像对肺结节进行良恶性分类的问题,提出了一个新颖的端到端深度学习网络DenseNet-centercrop。通过在原有的DenseNet结构中的稠密块间增加新的分支,引入了中心剪裁操作。该网络结构具有2个优势:(1)不仅最大程度保留了DenseNet的结构,而且将其稠密连接机制扩展到了稠密块水平,大大丰富了肺结节的多尺度特征。(2)参数量较少,是一种轻量化的网络结构。将基于该网络的肺结节良恶性分类方法在LIDC-IDRI数据集上进行评估,实验结果表明,DenseNet-centercrop极大地提高了DenseNet的性能,较现有的其他肺结节良恶性分类方法具有更高的AUC分值和分类精度。 展开更多
关键词 肺结节分类 电子计算机断层扫描图像 稠密连接卷积网络
在线阅读 下载PDF
卷积神经网络物体检测算法在物流仓库中的应用 被引量:15
2
作者 李天剑 黄斌 +1 位作者 刘江玉 金秋 《计算机工程》 CAS CSCD 北大核心 2018年第6期176-181,共6页
针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注... 针对传统物体检测算法在复杂环境下检测准确率较低的问题,提出一种新的托盘检测算法。采集真实仓库中包括人和托盘的大量图片进行标注,构建物流仓库的托盘数据库,并将单次多箱探测器检测算法中的基础网络改进为DenseNet网络,利用所标注的托盘数据库进行训练和测试。在测试阶段,结合不同分辨率的多尺度特征图,以增强网络对被检测物体的适应能力,并使用单一网络实现检测任务。实验结果表明,与YOLO算法相比,该算法检测准确率提高了6.1%。 展开更多
关键词 物体检测 托盘检测 卷积神经网路 深度学习 稠密连接卷积神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部