针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决...针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。展开更多
视觉同步定位与建图(VSLAM)技术常常用于室内机器人的导航与感知,然而VSLAM的位姿估算方法是针对静态环境的,当场景中存在运动对象时,可能会导致定位和建图失败。针对此问题,提出了一个结合实例分割与聚类的VSLAM系统。所提系统使用实...视觉同步定位与建图(VSLAM)技术常常用于室内机器人的导航与感知,然而VSLAM的位姿估算方法是针对静态环境的,当场景中存在运动对象时,可能会导致定位和建图失败。针对此问题,提出了一个结合实例分割与聚类的VSLAM系统。所提系统使用实例分割网络生成场景中动态对象的概率掩膜,同时利用多视图几何的方法检测场景中的动态点,并将检测到的动态点与获得的概率掩膜匹配之后确定动态物体的精确动态掩膜;利用动态掩膜删除动态物体的特征点,然后利用剩余的静态特征点准确估计摄像机的位置。为了解决实例分割网络欠分割的问题,采用深度填充算法和聚类算法保证动态特征点完全删除。最后,重建图片被动态物体遮挡的背景,在正确的相机位姿下建立静态稠密点云地图。在公开的TUM(Technical University of Munich)数据集上的实验结果表明,在动态环境中,所提系统在保证实时性的同时能实现鲁棒的定位与建图。展开更多
文摘针对动态物体严重干扰同时定位与建图(SLAM)系统正常运行的问题,提出一种基于目标检测和特征点关联的动态视觉SLAM算法。首先,利用YOLOv5目标检测网络得到环境中潜在动态物体的信息,并基于简易目标跟踪对图像漏检进行补偿;其次,为解决单一特征点的几何约束方法易出现误判的问题,依据图像的位置信息和光流信息建立特征点关联,再结合极线约束判断关系网的动态性;再次,结合两种方法剔除图像中的动态特征点,并用剩余的静态特征点加权估计位姿;最后,对静态环境建立稠密点云地图。在TUM(Technical University of Munich)公开数据集上的对比和消融实验的结果表明,与ORB-SLAM2和DS-SLAM(Dynamic Semantic SLAM)相比,所提算法在高动态场景下的绝对轨迹误差(ATE)中的均方根误差(RMSE)分别至少降低了95.22%和5.61%。可见,所提算法在保证实时性的同时提高了准确性和鲁棒性。
文摘视觉同步定位与建图(VSLAM)技术常常用于室内机器人的导航与感知,然而VSLAM的位姿估算方法是针对静态环境的,当场景中存在运动对象时,可能会导致定位和建图失败。针对此问题,提出了一个结合实例分割与聚类的VSLAM系统。所提系统使用实例分割网络生成场景中动态对象的概率掩膜,同时利用多视图几何的方法检测场景中的动态点,并将检测到的动态点与获得的概率掩膜匹配之后确定动态物体的精确动态掩膜;利用动态掩膜删除动态物体的特征点,然后利用剩余的静态特征点准确估计摄像机的位置。为了解决实例分割网络欠分割的问题,采用深度填充算法和聚类算法保证动态特征点完全删除。最后,重建图片被动态物体遮挡的背景,在正确的相机位姿下建立静态稠密点云地图。在公开的TUM(Technical University of Munich)数据集上的实验结果表明,在动态环境中,所提系统在保证实时性的同时能实现鲁棒的定位与建图。