期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种大规模双网络中k-连通Truss子图发现算法 被引量:1
1
作者 李源 盛飞 +2 位作者 孙晶 赵宇海 王国仁 《计算机学报》 EI CSCD 北大核心 2020年第9期1721-1736,共16页
双网络由具有相同顶点集合但不同边集合的物理图和概念图构成,能够反映顶点间不同层面的交互关系.双网络中稠密子图发现问题旨在发现物理图中连通而概念图中稠密的子图,在协作者网络分析、社区发现和疾病功能团检测等方面具有广泛应用.... 双网络由具有相同顶点集合但不同边集合的物理图和概念图构成,能够反映顶点间不同层面的交互关系.双网络中稠密子图发现问题旨在发现物理图中连通而概念图中稠密的子图,在协作者网络分析、社区发现和疾病功能团检测等方面具有广泛应用.但现有稠密子图模型存在以下问题:(1)基于最密集子图模型的稠密子图发现问题本质上是NP-难的,导致精确的子图发现算法在效率上存在很大问题;(2)基于k-核的模型虽然解决了效率问题,但是发现的稠密子图并不真正“稠密”.针对以上问题,本文(1)提出了k-连通truss子图(k-CT)模型.该模型更加稠密,因此允许子图间存在重叠;(2)为了发现k-连通truss子图,提出了一种高效的精确亚线性算法用于发现双网络中所有的k-CT子图;(3)基于k-CT子图,提出了最大连通truss子图(MCT)概念,对当前k-CT子图不存在任何非空(k+1)-CT子图;(4)提出了自顶向下、自底向上和二分法三种不同策略的MCT子图发现算法.大量基于真实和合成双网络数据的实验结果证明了本文提出算法的高效性和有效性. 展开更多
关键词 双网络 稠密子图发现 k-连通truss模型 最大连通truss模型 k-类索引
在线阅读 下载PDF
基于Twitter Storm平台并行挖掘最稠密子图 被引量:1
2
作者 王金明 王远方 《计算机科学》 CSCD 北大核心 2014年第1期274-278,共5页
在大规模图结构数据中发现最稠密子图具有极其广泛的应用,如社区发现、垃圾邮件检测和论文引用关系抽取等。基于带标签的无向图,提出了查询标签集的概念,设计了一个可以快速发现最稠密子图的近似算法DSFLC(Densest Subgraph Finding bas... 在大规模图结构数据中发现最稠密子图具有极其广泛的应用,如社区发现、垃圾邮件检测和论文引用关系抽取等。基于带标签的无向图,提出了查询标签集的概念,设计了一个可以快速发现最稠密子图的近似算法DSFLC(Densest Subgraph Finding based on Labelset Constraint):用户提交自定义的查询标签集,算法便可保证在用户可以接受的时间内返回满足查询标签集约束的最稠密子图。对于任何参数ε(ε>0),DSFLC算法只需扫描大规模数据集O(log1+εn)次,同时可保证算法的近似因子是2(1+ε)。对DSFLC算法进行分析后,发现该算法在预处理阶段易于并行化,因此选择Twitter Storm平台,并行化地实现了DSFLC算法。最后对从DBLP数据库中抽取的合作关系图进行测试,一方面研究Storm平台对算法的加速程度;另一方面分析挖掘出的子图的稠密度与参数ε之间的关系,最终验证了DSFLC算法的实用性和可扩展性。 展开更多
关键词 稠密子图发现 查询标签集 DSFLC算法 TWITTER Storm平台
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部