期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
求解稀疏逻辑回归问题的嵌套BB算法的分裂增广拉格朗日算法 被引量:1
1
作者 梁仁莉 白延琴 《运筹学学报》 北大核心 2019年第2期86-94,共9页
逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂... 逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率. 展开更多
关键词 稀疏逻辑回归 分裂增广拉格朗日算法 特征提取
在线阅读 下载PDF
基于中心对齐多核学习的稀疏多元逻辑回归算法 被引量:5
2
作者 雷大江 唐建烊 +1 位作者 李智星 吴渝 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2735-2741,共7页
稀疏多元逻辑回归(SMLR)作为一种广义的线性模型被广泛地应用于各种多分类任务场景中。SMLR通过将拉普拉斯先验引入多元逻辑回归(MLR)中使其解具有稀疏性,这使得该分类器可以在进行分类的过程中嵌入特征选择。为了使分类器能够解决非线... 稀疏多元逻辑回归(SMLR)作为一种广义的线性模型被广泛地应用于各种多分类任务场景中。SMLR通过将拉普拉斯先验引入多元逻辑回归(MLR)中使其解具有稀疏性,这使得该分类器可以在进行分类的过程中嵌入特征选择。为了使分类器能够解决非线性数据分类的问题,该文通过核技巧对SMLR进行核化扩充后得到了核稀疏多元逻辑回归(KSMLR)。KSMLR能够将非线性特征数据通过核函数映射到高维甚至无穷维的特征空间中,使其特征能够充分地表达并最终能进行有效的分类。此外,该文还利用了基于中心对齐的多核学习算法,通过不同的核函数对数据进行不同维度的映射,并用中心对齐相似度来灵活地选取多核学习权重系数,使得分类器具有更好的泛化能力。实验结果表明,该文提出的基于中心对齐多核学习的稀疏多元逻辑回归算法在分类的准确率指标上都优于目前常规的分类算法。 展开更多
关键词 稀疏优化 核技巧 多核学习 稀疏多元逻辑回归
在线阅读 下载PDF
联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法 被引量:9
3
作者 徐金环 沈煜 +1 位作者 刘鹏飞 肖亮 《电子学报》 EI CAS CSCD 北大核心 2018年第1期175-184,共10页
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点... 稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度. 展开更多
关键词 高光谱 图像分类 稀疏多元逻辑回归 错误剔除
在线阅读 下载PDF
一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法 被引量:1
4
作者 何艳萍 陈天伟 +1 位作者 郑旭东 沈宇臻 《桂林理工大学学报》 CAS 北大核心 2020年第1期143-149,共7页
由于高光谱图像存在大量噪声,超限稀疏多项逻辑回归无法分析高光谱图像的内在结构,其适用性有待进一步提高,为解决超限稀疏多项逻辑回归不能有效应对噪声的问题,提出了一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方... 由于高光谱图像存在大量噪声,超限稀疏多项逻辑回归无法分析高光谱图像的内在结构,其适用性有待进一步提高,为解决超限稀疏多项逻辑回归不能有效应对噪声的问题,提出了一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法:首先对高光谱遥感影像数据集进行归一化处理以消除数据量纲的影响,随后利用奇异谱分析对影像进行有效信息提取及噪声剔除,最后通过超限稀疏多项式逻辑回归对处理过的数据实现分类。采用多种不同数量的训练样本进行实验,并与3种常用分类算法进行对比分析,评价了本文方法的有效性和鲁棒性。结果显示,本文方法在各类训练样本情况下相比于其他分类方法,其总体分类精度皆有一定程度的提升。 展开更多
关键词 高光谱图像分类 超限稀疏多项逻辑回归 极限学习机 奇异谱分析
在线阅读 下载PDF
顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法
5
作者 沈宇臻 官云兰 +2 位作者 杨禄 刘承承 严小芳 《测绘通报》 CSCD 北大核心 2019年第6期24-28,共5页
稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想.本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法.首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取... 稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想.本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法.首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取;然后对二者进行加权平均特征级融合以获取更具唯一性的像元特征;最后由稀疏多项式逻辑回归分类器对融合结果进行分类.结果表明,本文方法能有效地提高分类精度,而且具有较强的稳健性. 展开更多
关键词 高光谱影像 特征融合 加权均值滤波 EMAPs 稀疏多项式逻辑回归
在线阅读 下载PDF
高光谱与LiDAR数据融合研究——以黑河中游张掖绿洲农业区精细作物分类为例 被引量:16
6
作者 杨思睿 薛朝辉 +2 位作者 张玲 苏红军 周绍光 《国土资源遥感》 CSCD 北大核心 2018年第4期33-40,共8页
高光谱遥感能同时获取地物空间影像和连续且精细的光谱信息,以图谱合一的形式更为精确地描述地物,然而高光谱影像普遍存在同物异谱和同谱异物现象,给准确地物分类带来挑战;激光雷达(light detection and ranging,LiDAR)能够获取地物拓... 高光谱遥感能同时获取地物空间影像和连续且精细的光谱信息,以图谱合一的形式更为精确地描述地物,然而高光谱影像普遍存在同物异谱和同谱异物现象,给准确地物分类带来挑战;激光雷达(light detection and ranging,LiDAR)能够获取地物拓扑信息,可用于构建地表三维模型,但单纯采用LiDAR数据无法准确识别地物。基于以上2点,开展高光谱影像和LiDAR数据的融合研究,采用形态学属性剖面进行特征提取,借助稀疏多项式逻辑回归分类器分类,探讨在不同特征组合下的融合与分类效果;并以黑河中游张掖绿洲农业区精细作物分类为目标,采用航空高光谱影像和LiDAR DSM数据对本文方法进行了应用验证。研究表明,该方法可获得精度更高和稳定性更好的分类结果,高光谱与LiDAR融合的方法分类精度最高可达94. 50%。 展开更多
关键词 高光谱影像 激光雷达 扩展形态学属性剖面 稀疏多项式逻辑回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部