期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于稀疏近邻表示的分类方法 被引量:4
1
作者 王琦 惠康华 《计算机工程与设计》 CSCD 北大核心 2013年第4期1425-1431,共7页
稀疏表示分类方法 (SRC)在人脸识别方面取得了当前最好的分类结果,针对SRC存在的问题,提出稀疏近邻表示方法 (SNRC)。在局部线性嵌入方法前提假设成立的条件下,SNRC通过稀疏近邻表示实现目标分类。在几个不同数据集上的实验结果显示,SNR... 稀疏表示分类方法 (SRC)在人脸识别方面取得了当前最好的分类结果,针对SRC存在的问题,提出稀疏近邻表示方法 (SNRC)。在局部线性嵌入方法前提假设成立的条件下,SNRC通过稀疏近邻表示实现目标分类。在几个不同数据集上的实验结果显示,SNRC适用于呈非线性分布的数据集,并取得了较好的效果。进一步的分析表明,SNRC能够较好的适用于那些通过降维方法得到的低维数据的分类问题,尤其适用于基于近邻保持的一类降维方法得到的低维数据,并且具有较低的时间复杂度。 展开更多
关键词 稀疏表示 局部线性嵌入 稀疏近邻表示 K近邻分类 降维
在线阅读 下载PDF
一种非负稀疏近邻表示的多标签学习算法
2
作者 陈思宝 徐丹洋 罗斌 《电子科技大学学报》 EI CAS CSCD 北大核心 2015年第6期899-904,共6页
针对训练数据中的非线性流形结构以及基于稀疏表示的多标签分类中判别信息丢失严重的问题,该文提出一种非负稀疏近邻表示的多标签学习算法。首先找到待测试样本每个标签类上的k-近邻,然后基于LASSO稀疏最小化方法,对待测试样本进行非负... 针对训练数据中的非线性流形结构以及基于稀疏表示的多标签分类中判别信息丢失严重的问题,该文提出一种非负稀疏近邻表示的多标签学习算法。首先找到待测试样本每个标签类上的k-近邻,然后基于LASSO稀疏最小化方法,对待测试样本进行非负稀疏线性重构,得到稀疏的非负重构系数。再根据重构误差计算待测试样本对每个类别的隶属度,最后实现多标签数据分类。实验结果表明所提出的方法比经典的多标签k近邻分类(ML-KNN)和稀疏表示的多标记学习算法(ML-SRC)方法性能更优。 展开更多
关键词 多标签学习 稀疏近邻表示 LASSO稀疏最小化 非负重构
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部