期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
基于稀疏贝叶斯极限学习机的光伏电站设备故障诊断研究 被引量:19
1
作者 孙莉 李静 +1 位作者 李继云 王磊 《太阳能学报》 EI CAS CSCD 北大核心 2020年第8期221-226,共6页
基于运维数据针对光伏(PV)电站逆变器的故障诊断进行研究,提出一种基于稀疏贝叶斯极限学习机(SBELM)的精准的光伏逆变器故障诊断方法。首先分析逆变器故障数据特征,将该问题转化为一个多分类问题;然后,采用合成少数类过采样技术(SMOTE)... 基于运维数据针对光伏(PV)电站逆变器的故障诊断进行研究,提出一种基于稀疏贝叶斯极限学习机(SBELM)的精准的光伏逆变器故障诊断方法。首先分析逆变器故障数据特征,将该问题转化为一个多分类问题;然后,采用合成少数类过采样技术(SMOTE)方法人工生成数据,解决数据不均衡问题,根据环境和逆变器实时监控据提取特征向量,并通过SBELM训练模型,可给出输出的概率分布,自动修剪冗余的隐藏节点,在不影响性能的前提下实现用部分节点进行多故障分类。通过实验分析,相比于其他故障诊断方法,SBELM诊断速度快且精度高,更适用于诊断光伏逆变器的故障。 展开更多
关键词 光伏电站设备 故障诊断 逆变器 稀疏贝叶斯极限学习机 SMOTE 学习
在线阅读 下载PDF
混合动力汽车电池内部状态预测的贝叶斯极限学习机方法 被引量:5
2
作者 王琪 孙玉坤 +3 位作者 倪福银 陈泰洪 陈连玉 罗印升 《中国机械工程》 EI CAS CSCD 北大核心 2016年第22期3118-3123,共6页
针对混合动力汽车(HEV)电池内部状态预测问题,引入贝叶斯极限学习机(BELM)方法。对BELM的基本原理进行了详细介绍,在高级车辆仿真软件ADVISOR中采集HEV电池的各项性能参数,包括电压、电流、温度和内阻等。基于此,将BELM应用于电池的荷... 针对混合动力汽车(HEV)电池内部状态预测问题,引入贝叶斯极限学习机(BELM)方法。对BELM的基本原理进行了详细介绍,在高级车辆仿真软件ADVISOR中采集HEV电池的各项性能参数,包括电压、电流、温度和内阻等。基于此,将BELM应用于电池的荷电状态(SOC)和健康状态(SOH)的预测,同时考虑电池老化对内部状态预测效果的影响。BELM预测结果表明:所设计的预测模型具有较高的精度,能够实时准确地预测出电池的SOC和SOH值。 展开更多
关键词 贝叶斯极限学习 混合动力汽车 荷电状态 健康状态
在线阅读 下载PDF
基于稀疏和近邻保持的极限学习机降维 被引量:11
3
作者 陈晓云 廖梦真 《自动化学报》 EI CSCD 北大核心 2019年第2期325-333,共9页
近邻与稀疏保持投影已被广泛应用于降维方法,通过优化得到满足近邻结构或稀疏结构的降维投影矩阵,然而这类方法多数只考虑单一结构特征.此外,多数非线性降维方法无法求出显式的映射函数,极大地限制了降维方法的应用.为克服这些问题,本... 近邻与稀疏保持投影已被广泛应用于降维方法,通过优化得到满足近邻结构或稀疏结构的降维投影矩阵,然而这类方法多数只考虑单一结构特征.此外,多数非线性降维方法无法求出显式的映射函数,极大地限制了降维方法的应用.为克服这些问题,本文借鉴极限学习机的思想,提出面向聚类的基于稀疏和近邻保持的极限学习机降维算法(SNP-ELM). SNP-ELM算法是一种非线性无监督降维方法,在降维过程中同时考虑数据的稀疏结构与近邻结构.在人造数据、Wine数据和6个基因表达数据上进行实验,实验结果表明该算法优于其他降维方法. 展开更多
关键词 极限学习 近邻表示 稀疏表示 降维
在线阅读 下载PDF
基于栈式降噪稀疏自编码器的极限学习机 被引量:14
4
作者 张国令 王晓丹 +2 位作者 李睿 来杰 向前 《计算机工程》 CAS CSCD 北大核心 2020年第9期61-67,共7页
极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐... 极限学习机(ELM)随机选择网络输入权重和隐层偏置,存在网络结构复杂和鲁棒性较弱的不足。为此,提出基于栈式降噪稀疏自编码器(sDSAE)的ELM算法。利用sDSAE稀疏网络的优势,挖掘目标数据的深层特征,为ELM产生输入权值与隐层偏置以求得隐层输出权值,完成训练分类器,同时通过加入稀疏性约束优化网络结构,提高算法分类准确率。实验结果表明,与ELM、PCA-ELM、ELM-AE和DAE-ELM算法相比,该算法在处理高维含噪数据时分类准确率较高,并且具有较强的鲁棒性。 展开更多
关键词 极限学习 降噪稀疏自编码器 稀疏 深度学习 特征提取
在线阅读 下载PDF
进化贝叶斯优化的核极限学习机分类器 被引量:12
5
作者 张梦蝶 覃华 苏一丹 《计算机工程与设计》 北大核心 2022年第2期399-405,共7页
为解决传统核极限学习机算法参数优化困难的问题,提高分类准确度,提出一种改进贝叶斯优化的核极限学习机算法。用樽海鞘群设计贝叶斯优化框架中获取函数的下置信界策略,提高算法的局部搜索能力和寻优能力;用这种改进的贝叶斯优化算法对... 为解决传统核极限学习机算法参数优化困难的问题,提高分类准确度,提出一种改进贝叶斯优化的核极限学习机算法。用樽海鞘群设计贝叶斯优化框架中获取函数的下置信界策略,提高算法的局部搜索能力和寻优能力;用这种改进的贝叶斯优化算法对核极限学习机的参数进行寻优,用最优参数构造核极限学习机分类器。在UCI真实数据集上进行仿真实验,实验结果表明,相比传统贝叶斯优化算法,所提算法能提升核极限学习机的分类精度,相较其它优化算法,所提算法可行有效。 展开更多
关键词 极限学习 核参数 贝叶斯优化 进化下置信界策略 分类精度
在线阅读 下载PDF
基于增量稀疏核极限学习机的柴油机故障在线诊断 被引量:7
6
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第2期217-224,共8页
为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的... 为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的原则实现样本前向稀疏与后向删减,在最佳阶数内对字典进行在线扩充与修剪,从而建立阶数有限且结构稀疏的诊断模型.针对模型核权重矩阵更新问题,提出了增样学习与改进减样学习算法对核权重矩阵进行在线递推求解,降低了计算复杂度,提高了模型在线更新速度.UCI标准数据与柴油机故障数据分类实验结果表明,与几类现有在线诊断算法相比,ISKELM在保证较高分类精度的同时,极大地提高了在线建模速度,更加快速准确地实现了柴油机故障在线诊断. 展开更多
关键词 增量稀疏极限学习 样本稀疏 瞬时信息测量 稀疏核函数字典 减样学习 在线诊断
在线阅读 下载PDF
基于增量稀疏核极限学习机的发动机状态在线预测 被引量:3
7
作者 刘敏 张英堂 +1 位作者 范红波 李志宁 《北京理工大学学报》 EI CAS CSCD 北大核心 2019年第1期34-40,共7页
针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实... 针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实现在线样本前向稀疏与后向删减,提高了样本稀疏化效率.利用有效样本对测量矩阵在最佳阶数内进行在线扩充与修剪,限制了预测模型膨胀.利用改进的增量建模方法对模型的核权重矩阵进行递推更新,从而建立规模有限且结构稀疏的在线预测模型,提高了在线建模速度.仿真数据和发动机状态参数在线预测实验结果表明,与现有在线预测方法相比,ISKELM具有更高的样本稀疏化和在线建模效率.对发动机排气温度进行120步预测时,预测速度分别提高了80.50%和31.72%,预测精度分别提高了48.56%和15.81%. 展开更多
关键词 极限学习 稀疏测量矩阵 样本信息度量 增量建模 在线预测
在线阅读 下载PDF
基于改进流形正则化极限学习机的短期电力负荷预测 被引量:34
8
作者 李冬辉 闫振林 +1 位作者 姚乐乐 郑宏宇 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2092-2099,共8页
为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机... 为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机;其次,针对流形正则化极限学习机中参数的选择,以及流形正则化极限学习机隐层节点选择的问题,提出将贝叶斯优化算法(BOA)融入到流形正则化极限学习机中以优化流形正则化极限学习机(MRELM)。最后,通过实验数据分析,改进流形正则化极限学习机预测方法将预测平均相对误差降低到了1.903%,30次实验的平均相对误差的方差降低到了1.9‰,平均单次运行时间降低到了6.113 s。 展开更多
关键词 短期电力负荷预测 流形正则化 极限学习 贝叶斯优化算法 平均相对误差 方差
在线阅读 下载PDF
基于极限学习机与子空间追踪的人脸识别算法 被引量:10
9
作者 张建明 刘阳春 吴宏林 《计算机工程》 CAS CSCD 北大核心 2016年第1期168-173,共6页
极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别... 极限学习机(ELM)与稀疏表示分类(SRC)算法被广泛应用于人脸识别中。ELM学习速度快,但不能很好地处理噪声图像,SRC对噪声具有鲁棒性,但计算复杂度较高。针对上述2种算法的优缺点,利用子空间追踪算法求解稀疏系数,提出一种改进的人脸识别算法,从而达到高识别率与快速的识别效果。该算法根据测试样本的ELM实际输出向量判断是否为噪声图像,干净图像直接依据ELM输出向量进行分类,噪声图像采用子空间追踪算法结合SRC框架来分类。在扩展的Yale B和ORL人脸数据库上的实验结果表明,该算法不仅识别率高,且识别速度快。 展开更多
关键词 人脸识别 极限学习 稀疏表示 稀疏编码 子空间追踪
在线阅读 下载PDF
基于多分类概率极限学习机的污水处理过程操作工况识别 被引量:10
10
作者 赵立杰 袁德成 柴天佑 《化工学报》 EI CAS CSCD 北大核心 2012年第10期3173-3182,共10页
污水处理过程复杂多变的运行工况以及系统脆弱的抗负荷冲击能力,常常导致污水处理厂运行目标难以实现,有效识别污水操作工况的变化对污水处理过程安全运行和操作优化十分重要。为增强未知样本分类可靠性,在概率极限学习机二分类基础上,... 污水处理过程复杂多变的运行工况以及系统脆弱的抗负荷冲击能力,常常导致污水处理厂运行目标难以实现,有效识别污水操作工况的变化对污水处理过程安全运行和操作优化十分重要。为增强未知样本分类可靠性,在概率极限学习机二分类基础上,将其扩展到多分类概率极限学习机方法 (extreme learning machine)。该方法首先采用极限学习机建立污水处理过程实时变量和污水处理过程工况编码之间的预报模型,然后根据类别的输出预报值分别建立每个类训练样本潜在函数的均值,确定所有类的条件概率密度函数,非线性最小二乘辨识条件概率密度函数参数,最后根据贝叶斯原理计算所有类的后验概率,由后验概率最大值判别样本所属类别。以辽宁某城市污水处理厂实时数据为背景进行验证,实验结果表明多分类概率极限学习机分类的可靠性和准确性优于极限学习机分类方法。 展开更多
关键词 污水处理 极限学习 贝叶斯决策 多分类
在线阅读 下载PDF
基于优化的灰色关联分析-极限学习机食用油污染物风险评价模型研究 被引量:4
11
作者 于家斌 范依云 +5 位作者 王小艺 赵峙尧 金学波 白玉廷 王立 陈慧敏 《食品科学》 EI CAS CSCD 北大核心 2023年第3期88-97,共10页
近年来食用油安全事故频发,为降低这类事件的威胁,对其风险评价模型进行研究有着极其重要的意义。针对目前食用油检测数据高维性、非线性、离散性和含噪声的特点,现有风险评价模型存在噪声抑制能力差、评价不准确和模型参数调整主观性... 近年来食用油安全事故频发,为降低这类事件的威胁,对其风险评价模型进行研究有着极其重要的意义。针对目前食用油检测数据高维性、非线性、离散性和含噪声的特点,现有风险评价模型存在噪声抑制能力差、评价不准确和模型参数调整主观性强等问题。对此,本实验提出一种食用油污染物风险评价模型。首先进行风险指标筛选以及数据预处理,然后将处理后的数据输入到基于小波阈值法的滤波模块中进行滤波,随后通过灰色关联分析计算各风险指标的权重来制定多指标综合风险值标签;由极限学习机(extreme learning machine,ELM)对综合风险值进行预测,在上述过程中利用实用贝叶斯优化算法分别来优化滤波模块和ELM网络的参数;最后利用模糊综合分析对预测综合风险值进行风险等级划分。本研究依托150组食用油数据进行分析,详细阐述了该模型的使用流程,通过不同模型对比实验,本研究模型决定系数R2和均方根误差分别为0.0563和0.9461,进一步验证了方法的优越性和有效性,可以为相关部门制定风险控制策略、抽检策略以及优化加工链提供更为合理的依据。 展开更多
关键词 食用油安全 风险评价 灰色关联分析 极限学习 实用贝叶斯优化
在线阅读 下载PDF
基于多极限学习机在线集成的柴油机故障诊断方法研究 被引量:5
12
作者 张英堂 马超 +2 位作者 尹刚 李志宁 任国全 《车用发动机》 北大核心 2012年第6期85-89,共5页
针对在线贯序极限学习机(OS-ELM)输出不稳定和过学习问题,提出了基于贝叶斯框架的多OS-ELM融合算法。首先通过在目标函数中引入输出矩阵的二范数,将线性回归问题转化为岭回归问题,改善OS-ELM的过学习问题。其次,构建多个OS-ELM分类器对... 针对在线贯序极限学习机(OS-ELM)输出不稳定和过学习问题,提出了基于贝叶斯框架的多OS-ELM融合算法。首先通过在目标函数中引入输出矩阵的二范数,将线性回归问题转化为岭回归问题,改善OS-ELM的过学习问题。其次,构建多个OS-ELM分类器对训练样本进行学习,在贝叶斯框架下实现多分类器的在线集成,以提高分类器的输出稳定性。UCI数据集的试验表明,与改进前相比,本算法的分类准确率提高了1.07%~3.35%,100次试验的标准差降低了0.001 5~0.021 4。柴油机11种工况的故障识别准确率可达到96.86%。 展开更多
关键词 柴油 极限学习 贝叶斯方法 集成学习 多尺度主元分析 故障诊断
在线阅读 下载PDF
基于图像超分辨极限学习机的极低分辨率人脸识别 被引量:6
13
作者 卢涛 杨威 万永静 《计算机应用》 CSCD 北大核心 2016年第2期580-585,共6页
极低分辨率图像本身包含的判别信息少且容易受到噪声的干扰,在现有的人脸识别算法下识别率较低。为了解决这一问题,提出一种基于图像超分辨率(SR)极限学习机(ELM)的人脸识别算法。首先,从样本库学习耦合的高低分辨率图像稀疏表达字典,... 极低分辨率图像本身包含的判别信息少且容易受到噪声的干扰,在现有的人脸识别算法下识别率较低。为了解决这一问题,提出一种基于图像超分辨率(SR)极限学习机(ELM)的人脸识别算法。首先,从样本库学习耦合的高低分辨率图像稀疏表达字典,利用高低分辨率表达系数的流形一致性重建高分辨率图像;其次,在超分辨率重建的高分辨率(HR)图像上构建ELM模型,训练获得前向神经网络的连接权值;最后,通过ELM预测输入极低人脸图像的类别属性。实验结果表明,针对于重建后的极低分辨率人脸图片,与协同表示的分类(CRC)人脸识别算法相比,所提算法将识别率分别提升了2%;同时也大幅度缩短了识别的时间。结果表明所提算法能够有效解决极低分辨率图片判决信息不足的问题,具有较好的识别能力。 展开更多
关键词 稀疏表达 超分辨率 极限学习 极低分辨率 人脸识别
在线阅读 下载PDF
基于并行学习的多层极限学习机 被引量:7
14
作者 李德利 张曦煌 《计算机应用研究》 CSCD 北大核心 2018年第2期459-461,共3页
为了进一步提高极限学习机的学习性能,将并行学习的思想引入单层极限学习机,并提出了基于并行学习的多层极限学习机模型。实验结果表明,该模型比传统的单层极限学习机、多层极限学习机以及传统基于误差反向学习的深度学习模型分类准确... 为了进一步提高极限学习机的学习性能,将并行学习的思想引入单层极限学习机,并提出了基于并行学习的多层极限学习机模型。实验结果表明,该模型比传统的单层极限学习机、多层极限学习机以及传统基于误差反向学习的深度学习模型分类准确率高、收敛速度快。 展开更多
关键词 神经网络 稀疏编码 极限学习 并行学习
在线阅读 下载PDF
基于改进极限学习机的食品安全风险预测研究 被引量:2
15
作者 陈硕峰 石怀明 +2 位作者 郭承湘 刘康康 陈宁江 《广西大学学报(自然科学版)》 CAS 北大核心 2021年第5期1388-1395,共8页
为了改善食品安全风险预测领域中由于正负样本量差距较大导致对于少数类的样本预测结果不理想的问题,提出一种加权PSO-ELM和贝叶斯人工神经网络两阶段模型。在该模型中,首先通过加权PSO-ELM模型预测食品安全风险;然后,通过在预处理阶段... 为了改善食品安全风险预测领域中由于正负样本量差距较大导致对于少数类的样本预测结果不理想的问题,提出一种加权PSO-ELM和贝叶斯人工神经网络两阶段模型。在该模型中,首先通过加权PSO-ELM模型预测食品安全风险;然后,通过在预处理阶段选出的特征字段建立贝叶斯网络,找出各个属性中对食品不合格概率影响最大的属性值,进而对预测结果进行分析。所提出的模型在实际数据集上进行预测和分析,与相关工作相比,在预测准确率和可靠性方面取得有效的改进效果。 展开更多
关键词 食品安全 极限学习 粒子群算法 贝叶斯网络 风险分析
在线阅读 下载PDF
基于改进深层极限学习机的故障诊断方法 被引量:11
16
作者 李可 熊檬 +2 位作者 宿磊 卢立新 陈森 《振动.测试与诊断》 EI CSCD 北大核心 2020年第6期1120-1127,1232,共9页
提出一种新的基于稀疏和近邻保持理论深层极限学习机(sparsity and neighborhood preserving deep extreme learning machines,简称SNP-DELM)的滚动轴承故障诊断方法。首先,将极限学习机(extreme learning machine,简称ELM)与自编码器(a... 提出一种新的基于稀疏和近邻保持理论深层极限学习机(sparsity and neighborhood preserving deep extreme learning machines,简称SNP-DELM)的滚动轴承故障诊断方法。首先,将极限学习机(extreme learning machine,简称ELM)与自编码器(autoencoder,简称AE)相结合,提出一种ELM-AE的结构,利用自编码器对极限学习机的隐含层进行分层;其次,将稀疏与近邻思想融入深层网络中,在投影过程中,通过稀疏表示保持数据的全局结构,通过近邻表示保持数据的局部流形结构,无监督地逐层提取数据的深层特征;最后,通过监督学习求解最小二乘进行分类诊断。将该方法用于风机滚动轴承故障诊断实验,并与ELM、堆叠降噪自编码器(stacked autoencoder,简称SAE)、深层极限学习机(deep extreme learning machine,简称DELM)、卷积神经网络(convolution neural network,简称CNN)等方法进行对比,实验结果表明,SNP-DELM算法相对于现有的几种算法具有更高的准确率和稳定性。 展开更多
关键词 故障诊断 深层极限学习 稀疏表示 近邻表示 滚动轴承
在线阅读 下载PDF
基于批次加权正则极限学习机的发酵过程软测量
17
作者 姚景升 刘飞 《江南大学学报(自然科学版)》 CAS 2013年第5期515-521,共7页
为实现发酵过程重要变量的预测,提出基于批次加权正则极限学习机的软测量模型。结合发酵过程中各批次变量变化轨迹与发酵初始条件密切相关的特点,采用欧式距离描述各训练批次初始条件与预测对象初始条件之间的相似度,设计了一种新的相... 为实现发酵过程重要变量的预测,提出基于批次加权正则极限学习机的软测量模型。结合发酵过程中各批次变量变化轨迹与发酵初始条件密切相关的特点,采用欧式距离描述各训练批次初始条件与预测对象初始条件之间的相似度,设计了一种新的相似度量化函数求解各训练批次的惩罚权值,实现了批次加权正则极限学习机建模;另外,针对正则极限学习机中的超参数估计问题,采用贝叶斯方法对超参数进行估计,降低了计算代价且实现了参数自适应估计。将其应用于青霉素发酵过程产物质量浓度的软测量中,仿真结果表明该方法预测精度高,效果好。 展开更多
关键词 发酵过程 软测量 正则极限学习 批次加权 贝叶斯参数估计
在线阅读 下载PDF
核极限学习机的在线状态预测方法综述 被引量:1
18
作者 戴金玲 吴明辉 +1 位作者 刘星 李睿峰 《兵器装备工程学报》 CSCD 北大核心 2021年第6期12-19,共8页
对非平稳混沌时间序列进行在线预测是当前科学和工程领域中的一个重要研究方向,核极限学习机(kernel extreme learning machine,KELM)为其提供了一种有效的数学模型。由于学习速度快、泛化性能好,在线贯序核极限学习机(online sequentia... 对非平稳混沌时间序列进行在线预测是当前科学和工程领域中的一个重要研究方向,核极限学习机(kernel extreme learning machine,KELM)为其提供了一种有效的数学模型。由于学习速度快、泛化性能好,在线贯序核极限学习机(online sequential KELM,OSKELM)在状态预测中得到了广泛的研究与扩展。首先,描述了问题并介绍了OSKELM的数学模型;然后,以混沌时间序列为应用背景,对基于OSKELM的各种改进方法进行了分类综述,包括基于数据增量的OSKELM、基于稀疏字典的OSKELM、基于参数寻优和遗忘因子的OSKELM以及其他方法,并对算法性能进行比较和分析;最后总结并讨论了该方法的未来研究方向。 展开更多
关键词 极限学习 状态预测 遗忘因子 时变正则化因子 稀疏字典
在线阅读 下载PDF
基于组稀疏贝叶斯逻辑回归运动想象脑电信号分类模型的通道选择与分类新算法 被引量:17
19
作者 张绍荣 朱志斌 +2 位作者 冯宝 余天佑 李智 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第10期179-191,共13页
针对脑电信号的通道选择和分类问题,提出了基于组稀疏贝叶斯逻辑回归(gsBLR)的运动想象脑电信号分类模型,同时进行通道选择和分类。首先,对多通道信号进行空间滤波和带通滤波,降低容积传导效应的影响;其次,对每个通道的信号提取具有判... 针对脑电信号的通道选择和分类问题,提出了基于组稀疏贝叶斯逻辑回归(gsBLR)的运动想象脑电信号分类模型,同时进行通道选择和分类。首先,对多通道信号进行空间滤波和带通滤波,降低容积传导效应的影响;其次,对每个通道的信号提取具有判别信息的时域、频域以及时频域特征,并进行特征融合;最后,使用gsBLR方法进行通道选择和分类,在贝叶斯学习框架下模型参数可自动从训练数据中估计得到,避免了繁琐而耗时的交叉验证过程。在两个公开的脑机接口(BCI)竞赛数据集和自采集数据集上进行了实验验证,分别获得了81.63%、84.97%和76.47%的最高平均分类准确率;相比其他方法,所提出的方法具有较好的分类准确率和较少的通道数,同时所选通道与神经生理背景更加吻合。 展开更多
关键词 运动想象脑电 接口 稀疏 贝叶斯学习 逻辑回归 通道选择
在线阅读 下载PDF
稀疏贝叶斯模型在跳频信号电台分选中的应用 被引量:8
20
作者 郭海召 张顺生 《信号处理》 CSCD 北大核心 2016年第6期733-738,共6页
当电磁环境更加复杂,现有的跳频信号分选算法,诸如K-Means聚类,支撑矢量机(SVM)等,往往面临较低的分选正确率或者较高的计算复杂度等问题。为了解决这两种问题,本文提出了一种基于稀疏贝叶斯学习(SBL)的跳频信号分选算法。在建立跳频信... 当电磁环境更加复杂,现有的跳频信号分选算法,诸如K-Means聚类,支撑矢量机(SVM)等,往往面临较低的分选正确率或者较高的计算复杂度等问题。为了解决这两种问题,本文提出了一种基于稀疏贝叶斯学习(SBL)的跳频信号分选算法。在建立跳频信号分选模型之后,引入稀疏贝叶斯学习框架完成后续分选过程,并针对电磁环境中多个跳频电台的情况,建立了多电台跳频信号分选的结构模型。仿真实验环节验证了所提算法的有效性。 展开更多
关键词 电台分选 稀疏贝叶斯学习 聚类 相关向量
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部