期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
稀疏谱聚类算法在高维数据上的应用 被引量:3
1
作者 徐雪丽 赵学靖 《中国科学技术大学学报》 CAS CSCD 北大核心 2017年第4期311-319,共9页
提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据... 提出一种新的稀疏谱聚类算法——基于PAM算法的HSSPAM聚类(high-dimensional sparse spectral clustering based on partitioning around medoids).该算法先用高相关系数过滤及主成分分析降维方法以有效减小甚至消除维度灾难对高维数据处理的影响,再采用Minkowski距离指数变换函数及稀疏化算法来构建分块对角矩阵以重新解释样本之间的相似度;然后构造新颖的拉普拉斯矩阵以实现进一步压缩数据矩阵,进而结合partitioning around medoids(PAM)算法取代传统谱聚类中的K-means算法对特征向量聚类以提高算法的聚类稳定性;最后引入高维基因数据设计了实验,并以不同的聚类评价指标来衡量该研究算法的聚类质量,实验结果表明,新算法能够更精确、更稳定地对基因数据聚类. 展开更多
关键词 高维数据 稀疏谱聚类算法 降维方法 分块对角矩阵 评价指标
在线阅读 下载PDF
稀疏谱聚类方法及应用 被引量:1
2
作者 徐雪丽 苏锦霞 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期685-690,共6页
提出了一种新的谱聚类算法:基于K-Medoids的SSKM聚类,不仅利用距离指数变换函数及稀疏化算法构建了分块对角矩阵以重新解释样本之间的相似度,还结合PAM算法取代传统谱聚类中的k-means算法对特征向量聚类以提高算法的聚类稳定性.为了使S... 提出了一种新的谱聚类算法:基于K-Medoids的SSKM聚类,不仅利用距离指数变换函数及稀疏化算法构建了分块对角矩阵以重新解释样本之间的相似度,还结合PAM算法取代传统谱聚类中的k-means算法对特征向量聚类以提高算法的聚类稳定性.为了使SSKM算法能够有效地处理高维数据,引入了高相关系数过滤及主成分分析降维技术,提出了SSKM算法的新版本HSSKM,能够识别高维数据结构以减少原始数据的特征规模.模拟数据及高维基因表达数据结果表明新算法具有聚类稳定、聚类结果更精确等显著性能. 展开更多
关键词 稀疏谱聚类 高维数据 降维技术 评价指标
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部