期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于稠密SIFT特征对齐的稀疏表达人脸识别算法 被引量:10
1
作者 周全 魏昕 +1 位作者 陈建新 郑宝玉 《电子与信息学报》 EI CSCD 北大核心 2015年第8期1913-1919,共7页
该文针对人脸图像受到非刚性变化的影响,如旋转、姿态以及表情变化等,提出一种基于稠密尺度不变特征转换(SIFT)特征对齐(Dense SIFT Feature Alignment,DSFA)的稀疏表达人脸识别算法。整个算法包含两个步骤:首先利用DSFA方法对齐训练和... 该文针对人脸图像受到非刚性变化的影响,如旋转、姿态以及表情变化等,提出一种基于稠密尺度不变特征转换(SIFT)特征对齐(Dense SIFT Feature Alignment,DSFA)的稀疏表达人脸识别算法。整个算法包含两个步骤:首先利用DSFA方法对齐训练和测试样本;然后设计一种改进的稀疏表达模型进行人脸识别。为加快DSFA步骤的执行速度,还设计了一种由粗到精的层次化对齐机制。实验结果表明:在ORL,AR和LFW 3个典型数据集上,该文方法都获得了最高的识别精度。该文方法比传统稀疏表达方法在识别精度上平均提高了4.3%,同时提高了大约6倍的识别效率。 展开更多
关键词 人脸识别 人脸对齐 稠密尺度不变特征转换特征 稀疏表达模型
在线阅读 下载PDF
Synthetic aperture radar imaging based on attributed scatter model using sparse recovery techniques
2
作者 苏伍各 王宏强 阳召成 《Journal of Central South University》 SCIE EI CAS 2014年第1期223-231,共9页
The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potentia... The sparse recovery algorithms formulate synthetic aperture radar (SAR) imaging problem in terms of sparse representation (SR) of a small number of strong scatters' positions among a much large number of potential scatters' positions, and provide an effective approach to improve the SAR image resolution. Based on the attributed scatter center model, several experiments were performed with different practical considerations to evaluate the performance of five representative SR techniques, namely, sparse Bayesian learning (SBL), fast Bayesian matching pursuit (FBMP), smoothed 10 norm method (SL0), sparse reconstruction by separable approximation (SpaRSA), fast iterative shrinkage-thresholding algorithm (FISTA), and the parameter settings in five SR algorithms were discussed. In different situations, the performances of these algorithms were also discussed. Through the comparison of MSE and failure rate in each algorithm simulation, FBMP and SpaRSA are found suitable for dealing with problems in the SAR imaging based on attributed scattering center model. Although the SBL is time-consuming, it always get better performance when related to failure rate and high SNR. 展开更多
关键词 attributed scatter center model sparse representation sparse Bayesian learning fast Bayesian matching pursuit smoothed l0 norm sparse reconstruction by separable approximation fast iterative shrinkage-thresholding algorithm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部