期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于改进稀疏表示正则化的SR重建算法
1
作者 谢冰 万淑慧 殷云华 《红外与激光工程》 EI CSCD 北大核心 2022年第3期517-526,共10页
基于视觉的无人机自主导航过程中,对航路点进行准确识别是引导无人机朝着航路点方向精确飞行的关键。然而,当无人机到达航路点识别距离后,由于机载图像传感器受天气因素及成像过程中的脱焦、衍射等现象影响,常导致获取到的航拍图像模糊... 基于视觉的无人机自主导航过程中,对航路点进行准确识别是引导无人机朝着航路点方向精确飞行的关键。然而,当无人机到达航路点识别距离后,由于机载图像传感器受天气因素及成像过程中的脱焦、衍射等现象影响,常导致获取到的航拍图像模糊、空间分辨率较低,从而直接影响了后续航路点识别的精度。针对这一问题,提出了一种改进稀疏表示正则化的航拍图像超分辨率重建算法。首先,基于稀疏表示正则化框架,利用自回归和非局部相似约束构建目标函数的正则化项;其次,根据图像局部方差能有效区分图像的边缘区域和平滑区域这一特性,自适应地选取正则化参数得到超分辨率重建模型中的目标函数;最后,使用MM (Majorization-Minorization)算法求解目标函数的凸优化问题,得到重建后的高分辨率图像。实验结果表明:与传统的正则化SR重建算法相比,文中算法能够有效的提高航拍图像的空间分辨率,使得重建后的图像包含了更多的特征细节信息,这为航路点识别提供了帮助。 展开更多
关键词 无人机 超分辨率重建 稀疏表示正则化 局部方差
在线阅读 下载PDF
基于字典学习的正则化鲁棒稀疏表示肿瘤细胞图像识别 被引量:2
2
作者 甘岚 张永焕 《计算机应用》 CSCD 北大核心 2016年第10期2895-2899,2906,共6页
针对胃黏膜肿瘤细胞图像的高维性及复杂性的特点,为了提高稀疏表示图像识别的鲁棒性,提出了一种基于字典学习的正则化鲁棒稀疏表示(RRC)肿瘤细胞图像识别方法。该方法首先将所有的原始染色肿瘤细胞图像转化为灰度图像;然后利用具有Fishe... 针对胃黏膜肿瘤细胞图像的高维性及复杂性的特点,为了提高稀疏表示图像识别的鲁棒性,提出了一种基于字典学习的正则化鲁棒稀疏表示(RRC)肿瘤细胞图像识别方法。该方法首先将所有的原始染色肿瘤细胞图像转化为灰度图像;然后利用具有Fisher判别约束的字典学习(FDDL)方法对肿瘤细胞图像训练样本的全局特征进行字典学习,得到具有类别标签的结构化字典;最后将具有判别性的新字典用于RRC模型进行分类识别。RRC模型是基于最大后验概率准则,将稀疏保真度表示为余项的最大后验概率函数,最终识别问题转化为求解正则化加权范数的优化逼近问题。将提出的识别方法应用于肿瘤细胞图像的最高识别率为92.4%,表明该方法能够有效地实现肿瘤细胞图像的分类。 展开更多
关键词 稀疏表示分类 Fisher判别字典学习 正则鲁棒稀疏表示 图像预处理 肿瘤细胞图像识别
在线阅读 下载PDF
基于判别式字典的正则化稀疏表示人脸识别算法 被引量:3
3
作者 陆振宇 张铃华 何珏杉 《南京信息工程大学学报(自然科学版)》 CAS 2015年第6期519-524,共6页
为了克服非约束性(光照、表情变化)条件下会大大降低人脸识别率的缺陷,提出一种基于Fisher判别准则的正则化稀疏表示人脸识别算法.首先将人脸图像经过Gabor滤波器滤波得到Gabor幅值图像,提取其统一化的局部二进制直方图,然后利用Fisher... 为了克服非约束性(光照、表情变化)条件下会大大降低人脸识别率的缺陷,提出一种基于Fisher判别准则的正则化稀疏表示人脸识别算法.首先将人脸图像经过Gabor滤波器滤波得到Gabor幅值图像,提取其统一化的局部二进制直方图,然后利用Fisher判别准则学习得到新的字典,最后通过正则化的稀疏表示判断测试图像所属类.利用AR数据库的数据进行实验的结果表明,与SRC、FDDL、RSC识别算法相比,本文算法在非约束性条件下具有最佳的识别率. 展开更多
关键词 人脸识别 正则稀疏表示 统一的局部二进制模式 GABOR滤波 学习字典
在线阅读 下载PDF
基于加权双层Bregman及图结构正则化的磁共振成像 被引量:1
4
作者 张明辉 肖凯 +1 位作者 卢红阳 徐晓玲 《深圳大学学报(理工版)》 EI CAS CSCD 北大核心 2016年第2期119-126,共8页
针对磁共振图像(magnetic resonance imaging,MRI)重建质量的问题,提出一种基于加权双层Bregman字典学习方法和图结构正则化稀疏表示的新算法.该算法中,迭代重加权最小l1和图结构正则化稀疏表示模型是被合并到双层Bregman字典学习方法中... 针对磁共振图像(magnetic resonance imaging,MRI)重建质量的问题,提出一种基于加权双层Bregman字典学习方法和图结构正则化稀疏表示的新算法.该算法中,迭代重加权最小l1和图结构正则化稀疏表示模型是被合并到双层Bregman字典学习方法中.加权双层Breman的字典学习方法在外层迭代中增强K空间抽样数据的约束性,在内层迭代中解决Lp的优化.而图结构正则化稀疏表示方法具备捕获图像结构细节的能力,所以从较高的欠采样数据中能完成精确重建.此外,在内层迭代中,重加权最小l1和图结构正则化稀疏表示使算法能快速地趋于收敛.实验结果表明,所提出的算法可有效恢复MRI图像,其峰值信噪比和高频错误的值都优于基于压缩感知的字典学习方法和基于双层Bregman的自适应字典学习方法. 展开更多
关键词 图像处理 磁共振成像 压缩感知 图结构正则稀疏表示 字典学习 加权双层伯格曼迭代 交替方向法
在线阅读 下载PDF
基于视觉传达技术的激光光斑图像超分辨率重建方法
5
作者 魏会廷 陈永光 王祺 《激光杂志》 CAS 北大核心 2024年第6期156-160,共5页
激光光斑图像在成像过程中易受到成像条件和成像方式的限制,导致激光光斑图像的分辨率比较低,难以满足实际需求。为此,提出基于视觉传达技术的激光光斑图像超分辨率重建方法。采用视觉传达技术采集激光光斑图像,并使用双树复小波阈值方... 激光光斑图像在成像过程中易受到成像条件和成像方式的限制,导致激光光斑图像的分辨率比较低,难以满足实际需求。为此,提出基于视觉传达技术的激光光斑图像超分辨率重建方法。采用视觉传达技术采集激光光斑图像,并使用双树复小波阈值方法对激光光斑图像去噪处理,通过改进稠密神经网络提取激光光斑图像特征,基于奇异值分解方法降低字典中原子的数目,改进稀疏表达正则化方法,实现激光光斑图像的超分辨率重建。实验结果表明,所提方法的低分辨率图像重建结果与原始图像更加接近,重建图像的结构相似度均在0.9以上,证明该方法的重建效果好、更适合实际应用。 展开更多
关键词 视觉传达技术 激光光斑图像 双树复小波 稀疏表示正则化 超分辨率重建
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部