期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于层级实时记忆算法的时间序列异常检测算法
被引量:
18
1
作者
曾惟如
吴佳
闫飞
《电子学报》
EI
CAS
CSCD
北大核心
2018年第2期325-332,共8页
时间序列异常检测是数据分析中一个重要的研究领域.传统的时间序列的异常检测方法主要通过比较检测数据和历史数据的差异程度,以判断被检测数据是否为奇异点(Surprise)、离群(Outlier)点等.然而序列和窗口的划分,状态的划分或者异常的...
时间序列异常检测是数据分析中一个重要的研究领域.传统的时间序列的异常检测方法主要通过比较检测数据和历史数据的差异程度,以判断被检测数据是否为奇异点(Surprise)、离群(Outlier)点等.然而序列和窗口的划分,状态的划分或者异常的定义和判定等问题,使得这类方法存在一定的局限性.本文针对传统时间序列检测算法不足,提出一种基于层级实时记忆算法的时间序列异常检测算法.该方法对时间序列内在模式关系进行学习,建立预测模型,通过比较预测值和真实值的偏离程度来判断数据是否异常.首先使用稀疏离散表征在保证保留数据相关性的同时又将数据离散化;然后输入到模型网络,预测下一时刻的数据值;最终根据预测值和真实值的差异为数据异常程度进行定量评分.在人造数据和真实数据上的实验表明,该方法能够准确、快速地发掘时间序列中的异常.
展开更多
关键词
异常检测
神经网络
层级实时记忆
稀疏离散表征
在线阅读
下载PDF
职称材料
题名
基于层级实时记忆算法的时间序列异常检测算法
被引量:
18
1
作者
曾惟如
吴佳
闫飞
机构
电子科技大学信息与软件工程学院
西南交通大学信息科学与技术学院
出处
《电子学报》
EI
CAS
CSCD
北大核心
2018年第2期325-332,共8页
基金
国家自然科学基金(No.61503059
No.61403316)
文摘
时间序列异常检测是数据分析中一个重要的研究领域.传统的时间序列的异常检测方法主要通过比较检测数据和历史数据的差异程度,以判断被检测数据是否为奇异点(Surprise)、离群(Outlier)点等.然而序列和窗口的划分,状态的划分或者异常的定义和判定等问题,使得这类方法存在一定的局限性.本文针对传统时间序列检测算法不足,提出一种基于层级实时记忆算法的时间序列异常检测算法.该方法对时间序列内在模式关系进行学习,建立预测模型,通过比较预测值和真实值的偏离程度来判断数据是否异常.首先使用稀疏离散表征在保证保留数据相关性的同时又将数据离散化;然后输入到模型网络,预测下一时刻的数据值;最终根据预测值和真实值的差异为数据异常程度进行定量评分.在人造数据和真实数据上的实验表明,该方法能够准确、快速地发掘时间序列中的异常.
关键词
异常检测
神经网络
层级实时记忆
稀疏离散表征
Keywords
anomaly detection
neuron network
hierarchical temporal memory
sparse distributed representation
分类号
TP311.1 [自动化与计算机技术—计算机软件与理论]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于层级实时记忆算法的时间序列异常检测算法
曾惟如
吴佳
闫飞
《电子学报》
EI
CAS
CSCD
北大核心
2018
18
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部