提出一种基于稀疏神经网络的说话人分割方法,利用稀疏的单隐层神经网络提取语音的超矢量特征中说话人因子特征,然后通过K均值聚类得到每帧语音的标号来分割不同说话人,在稀疏网络的训练过程中引入了dropout技术以克服过拟合问题.在TIMI...提出一种基于稀疏神经网络的说话人分割方法,利用稀疏的单隐层神经网络提取语音的超矢量特征中说话人因子特征,然后通过K均值聚类得到每帧语音的标号来分割不同说话人,在稀疏网络的训练过程中引入了dropout技术以克服过拟合问题.在TIMIT语音数据库构成的多说话人语音数据上的实验结果表明:通过增加稀疏网络中隐层节点的个数可以提高说话人分割的效果,与贝叶斯信息准则(Bayesian information criterion,BIC)方法和稀疏自编码网络方法相比,所提基于稀疏神经网络的说话人分割方法的性能有明显提高.展开更多
为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达...为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达;然后,基于星座图中各信号点密度大小对星座图进行上色,增强星座图中信号特征;最后,通过SDNN对增强后的星座图进行识别分类。实验结果表明,SDNN模型选取合适的剪枝率后,能够有效降低模型存储规模和计算量,其中模型参数压缩了72%,浮点运算量压缩了45%,与原模型97%的综合识别率相比,稀疏化处理后模型的综合识别率为96.8%,在小幅度识别精度损失范围内大幅降低了模型复杂度。展开更多
文摘提出一种基于稀疏神经网络的说话人分割方法,利用稀疏的单隐层神经网络提取语音的超矢量特征中说话人因子特征,然后通过K均值聚类得到每帧语音的标号来分割不同说话人,在稀疏网络的训练过程中引入了dropout技术以克服过拟合问题.在TIMIT语音数据库构成的多说话人语音数据上的实验结果表明:通过增加稀疏网络中隐层节点的个数可以提高说话人分割的效果,与贝叶斯信息准则(Bayesian information criterion,BIC)方法和稀疏自编码网络方法相比,所提基于稀疏神经网络的说话人分割方法的性能有明显提高.
文摘为在低复杂度约束条件下提升电磁信号调制识别的性能,提出了一种基于稀疏深度神经网络(Sparse Deep Neural Network,SDNN)的电磁信号调制识别方法。首先,通过提取电磁信号同相和正交两路数据绘制出信号的星座图,作为信号的浅层特征表达;然后,基于星座图中各信号点密度大小对星座图进行上色,增强星座图中信号特征;最后,通过SDNN对增强后的星座图进行识别分类。实验结果表明,SDNN模型选取合适的剪枝率后,能够有效降低模型存储规模和计算量,其中模型参数压缩了72%,浮点运算量压缩了45%,与原模型97%的综合识别率相比,稀疏化处理后模型的综合识别率为96.8%,在小幅度识别精度损失范围内大幅降低了模型复杂度。