期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
SparseMode:用于高效SpMV向量化代码生成的稀疏编译框架
1
作者 王昊天 丁岩 +2 位作者 何贤浩 肖国庆 阳王东 《计算机研究与发展》 北大核心 2025年第6期1443-1454,共12页
稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是数值计算中的核心操作,广泛应用于科学计算、工程模拟以及机器学习中.SpMV的性能优化主要受限于不规则的稀疏模式,传统的优化通常依赖手动设计存储格式、计算策略和内存... 稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是数值计算中的核心操作,广泛应用于科学计算、工程模拟以及机器学习中.SpMV的性能优化主要受限于不规则的稀疏模式,传统的优化通常依赖手动设计存储格式、计算策略和内存访问模式.现有张量编译器如TACO和TVM通过领域特定语言(domain specific language,DSL)可实现高性能算子生成,减轻开发人员繁琐的手动优化工作,但对稀疏计算的优化支持尚显不足,难以根据不同的稀疏模式自适应优化性能.为了解决这些问题,提出了名为SparseMode的稀疏编译框架,能够依据矩阵的稀疏模式为SpMV计算生成高效的向量化代码,并根据硬件平台的特性自适应地调整优化策略.该编译框架首先设计了领域专属语言SpMV-DSL,能够简洁高效地表达SpMV的稀疏矩阵和计算操作.然后提出了基于稀疏模式感知的方法,根据SpMV-DSL定义的矩阵存储格式和非零元素分布动态选择计算策略.最后通过稀疏模式分析和调度优化生成高效并行的SpMV算子代码,以充分利用SIMD指令提升性能.在不同硬件平台上的SpMV实验结果表明,SparseMode生成的SpMV算子代码相较于现有的TACO和TVM张量编译器实现了最高2.44倍的加速比. 展开更多
关键词 稀疏矩阵向量乘法 编译器 稀疏模式 高性能计算 向量
在线阅读 下载PDF
基于GPU对角稀疏矩阵向量乘法的动态划分算法
2
作者 涂进兴 李志雄 黄建强 《计算机应用》 CSCD 北大核心 2024年第11期3521-3529,共9页
在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)... 在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)。首先,设计一种全新的动态划分策略,根据矩阵的不同特征进行分块,在保证GPU高计算效率的同时大幅减少零元填充,去除冗余计算量;其次,提出一种对角稀疏矩阵存储格式BDIA(Block DIAgonal)存储分块数据,并调整数据布局,提高GPU上的访存性能;最后,基于GPU的底层进行条件分支优化,以减少分支判断,并使用动态共享内存解决向量的不规则访问问题。DIA-Dynamic与前沿Tile SpMV算法相比,平均加速比达到了1.88;与前沿BRCSD(Diagonal Compressed Storage based on Row-Blocks)-Ⅱ算法相比,平均零元填充减少了43%,平均加速比达到了1.70。实验结果表明,DIA-Dynamic能够有效提高GPU上对角SpMV的计算效率,缩短计算时间,提升程序性能。 展开更多
关键词 图形处理器 对角稀疏矩阵 稀疏矩阵向量乘法 动态划分 共享内存
在线阅读 下载PDF
高性能稀疏矩阵向量乘的程序设计综述
3
作者 杜臻 谭光明 孙凝晖 《高技术通讯》 CAS 北大核心 2024年第8期807-823,共17页
稀疏矩阵向量乘(SpMV)广泛应用于科学计算、图计算、数据分析等领域,是自现代计算机诞生以来经久不衰且挑战依旧的研究热点。本文系统回顾了20世纪70年代以来稀疏矩阵向量乘程序设计的发展脉络和各阶段的代表性工作;分析比较了这一领域... 稀疏矩阵向量乘(SpMV)广泛应用于科学计算、图计算、数据分析等领域,是自现代计算机诞生以来经久不衰且挑战依旧的研究热点。本文系统回顾了20世纪70年代以来稀疏矩阵向量乘程序设计的发展脉络和各阶段的代表性工作;分析比较了这一领域4条技术路线,即人工程序设计、自动调优器、稀疏编译器和自动程序设计器,在当今的流行方法;并在此基础上对高性能稀疏矩阵向量乘程序设计的研究趋势做出预测,力图给学习者和研究者带来有益的知识与启示。 展开更多
关键词 稀疏矩阵向量乘(spmv) 稀疏矩阵格式 自动调优 稀疏编译器 高性能计算 并行算法
在线阅读 下载PDF
一种不规则稀疏矩阵的SpMV方法
4
作者 施禹 董攀 张利军 《计算机工程与科学》 CSCD 北大核心 2024年第7期1175-1184,共10页
稀疏矩阵-向量乘法SpMV是高性能计算领域的关键算子之一,在新兴的深度学习领域中有着重要应用。现有SpMV算子通常采用行列相等的稀疏矩阵,而对于不规则形状稀疏矩阵(行数与列数不等)的研究仍存在空缺,值得进一步深入探讨。相比于行列相... 稀疏矩阵-向量乘法SpMV是高性能计算领域的关键算子之一,在新兴的深度学习领域中有着重要应用。现有SpMV算子通常采用行列相等的稀疏矩阵,而对于不规则形状稀疏矩阵(行数与列数不等)的研究仍存在空缺,值得进一步深入探讨。相比于行列相等的稀疏矩阵,不规则形状稀疏矩阵凭借其行数与列数不对等的稀疏特点具有进一步优化的空间。因此,针对这种行数与列数不对等的不规则形状稀疏矩阵建立SpMV性能模型,分析得到其出现性能瓶颈的原因在于缓存和内存之间数据交互的带宽不足。同时做了以下2个方面的优化工作:(1)基于常用稀疏矩阵CSR存储格式,提出新型RCSR存储格式,其针对CSR存储格式中一个制约性能的数组进行了变换和压缩,使得SpMV更加高效;(2)结合国产处理器的SIMD指令扩展设计了基于RCSR格式的SpMV优化算法。在国产飞腾处理器上分别使用规则和不规则稀疏矩阵进行测试,在规则稀疏矩阵的情况下,通过采用RCSR存储格式和SIMD加速指令集,以GFLOPS为性能指标,实现了平均83.35%的性能提升;在不规则稀疏矩阵的情况下,性能提升与行列比相关,在行列不对等加剧时,具有更为明显的优化效果。 展开更多
关键词 稀疏矩阵 不规则矩阵 向量乘法 多核性能 性能优化
在线阅读 下载PDF
稀疏矩阵向量乘法的并行计算
5
作者 杨岳湘 李晓梅 《计算机工程与科学》 CSCD 1992年第2期42-46,共5页
本文研究大型稀疏矩阵向量乘法的并行化措施。主要包括高效的存储方法,核心代码用汇编语言编写,循环展开,宏任务和微任务方式,重排序和分块技术。根据实际问题的需要,分别给出了一般稀疏矩阵和对称正定带状矩阵向量乘法内核子程序,ELLPA... 本文研究大型稀疏矩阵向量乘法的并行化措施。主要包括高效的存储方法,核心代码用汇编语言编写,循环展开,宏任务和微任务方式,重排序和分块技术。根据实际问题的需要,分别给出了一般稀疏矩阵和对称正定带状矩阵向量乘法内核子程序,ELLPACK,ITPAKC及LINPACK等库和许多应用程序可直接调用它们。 展开更多
关键词 稀疏矩阵 向量乘法 并行计算
在线阅读 下载PDF
稀疏矩阵向量乘法在申威众核架构上的性能优化 被引量:15
6
作者 李亿渊 薛巍 +4 位作者 陈德训 王欣亮 许平 张武生 杨广文 《计算机学报》 EI CSCD 北大核心 2020年第6期1037-1051,共15页
计算机数值模拟是现代科学和技术发展的重要触发力量.在数值模拟中,求解大规模稀疏线性方程组是非常重要的一个环节.迭代求解过程中稀疏矩阵向量乘法是耗时最长的计算核心之一,存在严重的数据局部性差、写冲突、负载不均衡等问题.因此,... 计算机数值模拟是现代科学和技术发展的重要触发力量.在数值模拟中,求解大规模稀疏线性方程组是非常重要的一个环节.迭代求解过程中稀疏矩阵向量乘法是耗时最长的计算核心之一,存在严重的数据局部性差、写冲突、负载不均衡等问题.因此,稀疏矩阵向量乘法已经成为了当前性能优化的难点和研究热点.本文面向国产众核处理器架构,以申威26010国产众核处理器为平台,针对稀疏矩阵向量乘法,在线程级和指令级并行层面上进行细粒度的并行算法设计和优化实现.其核心思想是,将众核架构设计精巧的矩阵分层分块技术用于矩阵存储、访问和任务调度,在保证右端向量数据复用的同时有效实现了负载均衡,避免了申威26010上因频繁缓存判断和细粒度访问导致的潜在性能问题.通过对SuiteSparse矩阵集合中的2710个算例的测试,该算法可以获得与主核上的串行算法相比11.7倍的平均加速和55倍的最高加速. 展开更多
关键词 申威众核处理器 并行计算 矩阵向量乘法 矩阵格式 稀疏矩阵计算
在线阅读 下载PDF
基于高预测性的稀疏矩阵向量乘法并行计算优化 被引量:2
7
作者 夏天 付格林 +2 位作者 曲劭儒 罗中沛 任鹏举 《计算机研究与发展》 EI CSCD 北大核心 2023年第9期1973-1987,共15页
稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是广泛应用于科学计算、工业仿真和智能计算等领域的重要算法,是核心的计算行为之一.在一些应用场景中,需要进行多次的SpMV迭代,以完成精确的数值模拟、线性代数求解和图分... 稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是广泛应用于科学计算、工业仿真和智能计算等领域的重要算法,是核心的计算行为之一.在一些应用场景中,需要进行多次的SpMV迭代,以完成精确的数值模拟、线性代数求解和图分析收敛等计算要求.受限于SpMV本身的高度随机性和稀疏性所导致的数据局部性极差、缓存效率极低、计算模式非常不规则等问题,导致其计算负载成为当前高性能处理器的优化难点和研究热点.基于现代高性能超标量乱序处理器的架构特征,深入研究SpMV的各类性能瓶颈,并且提出从提升可预测性和降低程序复杂度的角度进行全面的性能优化.其核心思想是:通过构建串行访问的数据结构,提升数据访问的规律性和局部性,大幅度优化数据预取效率和缓存利用效率;通过构建规则的分支跳转条件,提升程序的分支预测准确率,有效提升程序执行效率;通过灵活运用SIMD指令集,有效提升计算资源利用率.通过对以上特性的优化,该方法可以显著缓解性能瓶颈,大幅度提升处理器资源、缓存资源和访存带宽的利用率,并且获得与主流商用计算库MKL相比平均2.6倍的加速比,相比于现有最先进算法获得平均1.3倍的加速比. 展开更多
关键词 矩阵向量乘法 稀疏矩阵计算 矩阵格式 分支预测 数据预取
在线阅读 下载PDF
基于RISC-V向量指令的稀疏矩阵向量乘法实现与优化 被引量:7
8
作者 顾越 赵银亮 《计算机工程与科学》 CSCD 北大核心 2022年第1期1-8,共8页
开源指令集架构RISC-V具有高性能、模块化、简易性和易拓展等优势,在物联网、云计算等领域的应用日渐广泛,其向量拓展部分V模块更是很好地支持了矩阵数值计算。稀疏矩阵向量乘法SpMV作为矩阵数值计算的一个重要组成部分,具有深刻的研究... 开源指令集架构RISC-V具有高性能、模块化、简易性和易拓展等优势,在物联网、云计算等领域的应用日渐广泛,其向量拓展部分V模块更是很好地支持了矩阵数值计算。稀疏矩阵向量乘法SpMV作为矩阵数值计算的一个重要组成部分,具有深刻的研究意义与价值。利用RISC-V指令集的向量可配置性和寻址特性,分别对基于CSR、ELLPACK和HYB压缩格式存储的稀疏矩阵向量乘法进行向量化。同时,考虑稀疏矩阵极度稀疏和每行非零元素数量波动较大的情况,通过压缩非零元素密度低的行向量的存储、调整HYB分割阈值等手段,改进了HYB存储格式,显著改善了计算效率和存储效率。 展开更多
关键词 RISC-V 向量拓展 稀疏矩阵 spmv
在线阅读 下载PDF
选择粗化函数优化并行稀疏矩阵向量乘法
9
作者 叶纬材 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期50-53,共4页
讨论了如何分划稀疏矩阵的非零元素以减少并行矩阵向量乘法的通信代价。通过以粗化函数为工具,统一现有的数据分划方法;提出一种基于行列分划为初解的粗化函数选取方法,在理论上的证明其运行效率与分划质量不逊于一维数据分划方法;实验... 讨论了如何分划稀疏矩阵的非零元素以减少并行矩阵向量乘法的通信代价。通过以粗化函数为工具,统一现有的数据分划方法;提出一种基于行列分划为初解的粗化函数选取方法,在理论上的证明其运行效率与分划质量不逊于一维数据分划方法;实验数据表明,该方法产生分划质量超过一维数据分划方法的结果,接近甚至超过二维细粒度方上法的结果。 展开更多
关键词 选择粗化函数 数据分划 并行 稀疏矩阵向量乘法
在线阅读 下载PDF
TEB:GPU上矩阵分解重构的高效SpMV存储格式 被引量:2
10
作者 王宇华 张宇琪 +2 位作者 何俊飞 徐悦竹 崔环宇 《计算机科学与探索》 CSCD 北大核心 2024年第4期1094-1108,共15页
稀疏矩阵向量乘法(SpMV)是科学与工程领域中一个至关重要的计算过程,CSR(compressed sparse row)格式是最常用的稀疏矩阵存储格式之一,在图形处理器(GPU)平台上实现并行SpMV的过程中,其只存储稀疏矩阵的非零元,避免零元素填充所带来的... 稀疏矩阵向量乘法(SpMV)是科学与工程领域中一个至关重要的计算过程,CSR(compressed sparse row)格式是最常用的稀疏矩阵存储格式之一,在图形处理器(GPU)平台上实现并行SpMV的过程中,其只存储稀疏矩阵的非零元,避免零元素填充所带来的计算冗余,节约存储空间,但存在着负载不均衡的问题,浪费了计算资源。针对上述问题,对近年来效果良好的存储格式进行了研究,提出了一种逐行分解重组存储格式——TEB(threshold-exchangeorder block)格式。该格式采用启发式阈值选择算法确定合适分割阈值,并结合基于重排序的行归并算法,对稀疏矩阵进行重构分解,使得块与块之间非零元个数尽可能得相近,其次结合CUDA(computer unified device architecture)线程技术,提出了基于TEB存储格式的子块间并行SpMV算法,能够合理分配计算资源,解决负载不均衡问题,从而提高SpMV并行计算效率。为了验证TEB存储格式的有效性,在NVIDIA Tesla V100平台上进行实验,结果表明TEB相较于PBC(partition-block-CSR)、AMF-CSR(adaptive multi-row folding of CSR)、CSR-Scalar(compressed sparse row-scalar)和CSR5(compressed sparse row 5)存储格式,在SpMV的时间性能方面平均可提升3.23、5.83、2.33和2.21倍;在浮点计算性能方面,平均可提高3.36、5.95、2.29和2.13倍。 展开更多
关键词 稀疏矩阵向量乘法(spmv) 重新排序 CSR格式 负载均衡 存储格式 图形处理器(GPU)
在线阅读 下载PDF
稀疏矩阵相乘的一个改进算法 被引量:6
11
作者 蒋川群 杜奕 《计算机工程与应用》 CSCD 北大核心 2009年第19期55-57,共3页
稀疏矩阵的乘法运算可用于解决许多实际的应用问题。提出一种新颖的稀疏矩阵相乘算法,算法实现中将计算单元由单个元素扩展至行向量,避免了矩阵的转置,减少了扫描次数。利用三元组和少量的额外辅助空间实现稀疏矩阵的相乘。实验结果表... 稀疏矩阵的乘法运算可用于解决许多实际的应用问题。提出一种新颖的稀疏矩阵相乘算法,算法实现中将计算单元由单个元素扩展至行向量,避免了矩阵的转置,减少了扫描次数。利用三元组和少量的额外辅助空间实现稀疏矩阵的相乘。实验结果表明了该算法的有效性。 展开更多
关键词 稀疏矩阵 三元组 矩阵乘法 向量
在线阅读 下载PDF
SpMV计算的ARM和FPGA异构加速器设计
12
作者 朱明达 薛济擎 艾纯瑶 《电讯技术》 北大核心 2024年第2期302-309,共8页
针对稀疏矩阵向量乘(Sparse Matrix-Vector Multiplication,SpMV)在边缘端实施效率不高的问题,以稀疏矩阵的存储格式、SpMV的现场可编程门阵列(Field Programmable Gate Array,FPGA)加速为研究对象,提出了一种多端口改进的行压缩存储格... 针对稀疏矩阵向量乘(Sparse Matrix-Vector Multiplication,SpMV)在边缘端实施效率不高的问题,以稀疏矩阵的存储格式、SpMV的现场可编程门阵列(Field Programmable Gate Array,FPGA)加速为研究对象,提出了一种多端口改进的行压缩存储格式(Modified Compressed Sparse Row Format,MCSR)与ARM+FPGA架构任务级数据级硬件优化相结合的加速方法。使用多个端口并行存取数据来提高计算并行度;使用数据流、循环流水实现循环间、循环内的并行加速;使用数组分割、流传输实现数据的细粒度并行缓存与计算;使用ARM+FPGA架构,ARM完成对系统的控制,将计算卸载到FPGA并行加速。实验结果表明,并行加速优化后的ARM+FPGA方案相较于单ARM方案最高可达10倍的加速效果,而且增加的资源消耗在可接受范围内,矩阵规模越大非零值越多加速效果越明显。研究成果在边缘端实施SpMV计算方面有一定实用价值。 展开更多
关键词 稀疏矩阵向量乘(spmv) 异构加速器 硬件加速
在线阅读 下载PDF
面向国产申威26010众核处理器的SpMV实现与优化 被引量:13
13
作者 刘芳芳 杨超 +2 位作者 袁欣辉 吴长茂 敖玉龙 《软件学报》 EI CSCD 北大核心 2018年第12期3921-3932,共12页
世界首台峰值性能超过100P的超级计算机——神威太湖之光已经研制完成,该超级计算机采用了国产申威异构众核处理器,该处理器不同于现有的纯CPU,CPU-MIC,CPU-GPU架构,采用了主-从核架构,单处理器峰值计算能力为3TFlops/s,访存带宽为130GB... 世界首台峰值性能超过100P的超级计算机——神威太湖之光已经研制完成,该超级计算机采用了国产申威异构众核处理器,该处理器不同于现有的纯CPU,CPU-MIC,CPU-GPU架构,采用了主-从核架构,单处理器峰值计算能力为3TFlops/s,访存带宽为130GB/s.稀疏矩阵向量乘SpMV(sparse matrix-vector multiplication)是科学与工程计算中的一个非常重要的核心函数,众所周知,其是带宽受限型的,且存在间接访存操作.国产申威处理器给稀疏矩阵向量乘的高效实现带来了很大的挑战.针对申威处理器提出了一种CSR格式SpMV操作的通用异构众核并行算法,该算法从任务划分、LDM空间划分方面进行精细设计,提出了一套动静态buffer的缓存机制以提升向量x的访存命中率,提出了一套动静态的任务调度方法以实现负载均衡.另外还分析了该算法中影响SpMV性能的几个关键因素,并开展了自适应优化,进一步提升了性能.采用Matrix Market矩阵集中具有代表性的16个稀疏矩阵进行了测试,相比主核版最高有10倍左右的加速,平均加速比为6.51.通过采用主核版CSR格式SpMV的访存量进行分析,测试矩阵最高可达该处理器实测带宽的86%,平均可达到47%. 展开更多
关键词 稀疏矩阵向量 spmv 申威26010处理器 异构众核并行 自适应优化
在线阅读 下载PDF
基于HYB格式SpMV在新一代申威架构上的实现与优化 被引量:1
14
作者 王鑫 彭健 《计算机工程与科学》 CSCD 北大核心 2023年第10期1754-1762,共9页
稀疏矩阵与稠密向量乘SpMV在高性能计算领域有着广泛的应用。稀疏矩阵因其非零元素分布的稀疏性和不规则性,使得运算的并行化较稠密矩阵难度更大。因此,稀疏矩阵向量乘法的性能优化一直都是高性能计算领域中的研究重点。基于稀疏矩阵的... 稀疏矩阵与稠密向量乘SpMV在高性能计算领域有着广泛的应用。稀疏矩阵因其非零元素分布的稀疏性和不规则性,使得运算的并行化较稠密矩阵难度更大。因此,稀疏矩阵向量乘法的性能优化一直都是高性能计算领域中的研究重点。基于稀疏矩阵的HYB存储格式,面向国产新一代申威异构众核处理器SW26010P,设计了一种并行SpMV算法及其性能优化方案。并针对HYB存储格式的阈值选取难点,提出了一种多次迭代最大类间方差的方法,以确定HYB格式的阈值。实验结果表明,相比主核上的串行算法,并行SpMV算法可以获得23.36的平均加速比和34.85的最高加速比。 展开更多
关键词 申威众核处理器 稀疏矩阵向量乘法 最大类间方差法 并行计算
在线阅读 下载PDF
RAM(h)模型下SpMV存储访问复杂度的分析
15
作者 袁娥 张云泉 孙相征 《计算机工程与设计》 CSCD 北大核心 2009年第3期613-618,共6页
稀疏矩阵向量乘(SpMV)采取压缩行存储格式的算法性能非常差,而寄存器分块算法可以使得数据尽量在靠近处理器的存储层次中访问而提高性能。利用RAM(h)模型进行分析和比较不同算法形式的存储访问复杂度,可以比较两种算法的优劣。通过RAM(h... 稀疏矩阵向量乘(SpMV)采取压缩行存储格式的算法性能非常差,而寄存器分块算法可以使得数据尽量在靠近处理器的存储层次中访问而提高性能。利用RAM(h)模型进行分析和比较不同算法形式的存储访问复杂度,可以比较两种算法的优劣。通过RAM(h)分析SpMV两种实现形式的存储访问复杂度,同时在奔腾四平台上,测试了7个稀疏矩阵的SpMV性能,并统计了这两种算法中L1,L2,和TLB的缺失率,实验结果与模型分析的数据一致。 展开更多
关键词 spmv 稀疏矩阵向量 RAM(h)模型 存储访问复杂度
在线阅读 下载PDF
利用数据稀疏性的LSTM加速器设计 被引量:1
16
作者 高琛 张帆 高彦钊 《电子学报》 EI CAS CSCD 北大核心 2021年第2期209-215,共7页
针对长短时记忆神经网络(Long Short-Term Memory,LSTM)模型计算开销大、冗余计算较多的问题,本文提出一种利用输入数据稀疏性的LSTM加速器设计方案.本方案基于Delta网络算法,对输入序列的稀疏性进行构建,在避免数据不规则加载的前提下... 针对长短时记忆神经网络(Long Short-Term Memory,LSTM)模型计算开销大、冗余计算较多的问题,本文提出一种利用输入数据稀疏性的LSTM加速器设计方案.本方案基于Delta网络算法,对输入序列的稀疏性进行构建,在避免数据不规则加载的前提下,对冗余矩阵向量乘法运算进行过滤;针对矩阵向量乘法计算模式进行建模,寻找最高效的并行阵列计算架构设计.在MNIST标准数据集上的实验表明,当Delta网络算法的过滤门限不超过0.5时,LSTM神经网络算法检测准确率不变,计算性能提高了21.53倍. 展开更多
关键词 长短时记忆神经网络 现场可编程逻辑门阵列 稀疏 矩阵向量乘法
在线阅读 下载PDF
一种用于图形渲染的高性能SpMV专用加速器结构 被引量:1
17
作者 邓军勇 马青青 《小型微型计算机系统》 CSCD 北大核心 2021年第3期584-588,共5页
图形渲染中涉及的几何变换、投影变换、视口变换等需要大量稀疏矩阵向量乘法(Sparse Matrix-Vector Multiplication,SpM V)运算,如何实现SpMV高性能计算成为了图形处理器设计中的关键性问题之一,然而,当前的SpMV运算存在并行度较差,资... 图形渲染中涉及的几何变换、投影变换、视口变换等需要大量稀疏矩阵向量乘法(Sparse Matrix-Vector Multiplication,SpM V)运算,如何实现SpMV高性能计算成为了图形处理器设计中的关键性问题之一,然而,当前的SpMV运算存在并行度较差,资源占用较多等问题.为提升硬件运算的性能,本文基于矩阵列向量的线性组合,充分利用数据的并行性,设计了一种专用加速器结构.实验表明,在XC6VLX550T开发板上与其他两种结构相比,速度分别能够提高28%、37%,资源占用率分别减少约48%、18%,应用于图形渲染中的变换操作后,速度分别能够提高28%、30%,资源占用率分别最高减少约48%、60%. 展开更多
关键词 图形渲染 稀疏矩阵向量乘法 并行度 矩阵向量的线性组合
在线阅读 下载PDF
基于自选尾数压缩的高能效浮点忆阻存内处理系统 被引量:2
18
作者 丁文隆 汪承宁 童薇 《计算机研究与发展》 EI CSCD 北大核心 2022年第3期533-552,共20页
矩阵向量乘法(matrix-vector multiplication, MVM)运算是高性能科学线性系统求解的重要计算内核.Feinberg等人最近的工作提出了将高精度浮点数部署在忆阻阵列上的方法,显示出其在加速科学MVM运算方面的巨大潜力.由于科学计算不同类型... 矩阵向量乘法(matrix-vector multiplication, MVM)运算是高性能科学线性系统求解的重要计算内核.Feinberg等人最近的工作提出了将高精度浮点数部署在忆阻阵列上的方法,显示出其在加速科学MVM运算方面的巨大潜力.由于科学计算不同类型的应用对于求解精度的要求各不相同,为具体应用提供合适的计算方式是进一步降低系统能耗的有效途径.展示了一种拥有尾数压缩与对齐位优化策略的系统,在实现高精度浮点数忆阻MVM运算这一基本功能的前提下,能够根据具体应用的求解精度要求选择合适的浮点数尾数压缩位数.通过忽略浮点数尾数权重较小的部分低位与冗余的对齐位的阵列激活,减小运算时阵列及外围电路的能耗.评估结果表明:当忆阻器求解相对于软件基线平均分别有0~10;数量级的求解残差时,平均运算阵列能耗与模数转换器能耗相对于已有的优化前的系统分别减少了5%~65%与30%~55%. 展开更多
关键词 忆阻器阵列 模拟矩阵向量乘法 高能效科学计算 存内并行处理系统 稀疏线性代数系统
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部