稀疏矩阵与向量相乘(Sp MV)是科学计算和工程应用中一个重要问题,而且非常适宜进行并行计算,目前在GPU对Sp M V的实现和优化是一个研究热点.针对准对角矩阵存在的一些不规则性,采用CSR+DLA混合存储格式来进行Sp M V计算,能够提高压缩的...稀疏矩阵与向量相乘(Sp MV)是科学计算和工程应用中一个重要问题,而且非常适宜进行并行计算,目前在GPU对Sp M V的实现和优化是一个研究热点.针对准对角矩阵存在的一些不规则性,采用CSR+DLA混合存储格式来进行Sp M V计算,能够提高压缩的效果.为了发挥CPU多核的并行计算能力,采用一种CPU+GPU混合计算模式,这样可以把混合存储格式不同格式的数据分割到CPU和GPU上,从而提高了资源的利用效能.本文另外还在分析CPU+GPU异构计算模式的特征基础上,提出一些优化策略,能够改进准对角矩阵与向量相乘在异构计算环境中的计算性能.展开更多
针对基于GPU求解大规模稀疏线性方程组进行了研究,提出一种稀疏矩阵的分块存储格式HMEC(hybrid multiple ELL and CSR)。通过重排序优化系数矩阵的存储结构,将系数矩阵以一定的比例分块存储,采用ELL与CSR存储格式相结合的方式以适应不...针对基于GPU求解大规模稀疏线性方程组进行了研究,提出一种稀疏矩阵的分块存储格式HMEC(hybrid multiple ELL and CSR)。通过重排序优化系数矩阵的存储结构,将系数矩阵以一定的比例分块存储,采用ELL与CSR存储格式相结合的方式以适应不同的分块特征,分别使用适用于不对称矩阵的不完全LU分解预处理BiCGStab法和对称正定矩阵的不完全Cholesky分解预处理共轭梯度法求解大规模稀疏线性系统。实验表明,应用HMEC格式存储稀疏矩阵并以调用GPU kernel的方式实现前述两种方法,与其他存储格式的实现方式作比较,最优可分别获得31.89%和17.50%的加速效果。展开更多
文摘稀疏矩阵与向量相乘(Sp MV)是科学计算和工程应用中一个重要问题,而且非常适宜进行并行计算,目前在GPU对Sp M V的实现和优化是一个研究热点.针对准对角矩阵存在的一些不规则性,采用CSR+DLA混合存储格式来进行Sp M V计算,能够提高压缩的效果.为了发挥CPU多核的并行计算能力,采用一种CPU+GPU混合计算模式,这样可以把混合存储格式不同格式的数据分割到CPU和GPU上,从而提高了资源的利用效能.本文另外还在分析CPU+GPU异构计算模式的特征基础上,提出一些优化策略,能够改进准对角矩阵与向量相乘在异构计算环境中的计算性能.