期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
高效稀疏特征聚合的点云语义分割方法
1
作者 胡立坤 王小勇 黄润辉 《广西大学学报(自然科学版)》 北大核心 2025年第3期558-569,共12页
针对现有大规模场景点云语义分割方法效率低、难以满足实时性和大规模场景边界分割精度低的问题,提出一种高效稀疏特征聚合的点云语义分割方法。该方法以锥形栅格表述输入点云,设计高效稀疏特征聚合模块学习上下文语义特征,解决了特征... 针对现有大规模场景点云语义分割方法效率低、难以满足实时性和大规模场景边界分割精度低的问题,提出一种高效稀疏特征聚合的点云语义分割方法。该方法以锥形栅格表述输入点云,设计高效稀疏特征聚合模块学习上下文语义特征,解决了特征提取计算量大、内存效率低的问题;通过邻域内语义标签单一性设计边界损失函数,解决物体边界模糊问题。实验表明:该方法在SemanticKITTI和nuScenes数据集上的语义分割平均交并比(mIoU)分别达到66.9%和74.1%,相比算法VCL分别提高了3.3、3.6个百分点;在SemanticKITTI验证集上推理速度达到19.2 Hz,远超该数据集点云采集频率10 Hz,满足实时性要求。本文方法能够更高效地提取稀疏语义特征,并能对物体边界进行准确分割。 展开更多
关键词 稀疏特征聚合 边界损失 语义分割 点云
在线阅读 下载PDF
基于点云稀疏空间特征聚合激励的单阶段3D目标检测模型 被引量:1
2
作者 鲁斌 孙洋 杨振宇 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第5期721-733,共13页
针对目前基于点云的3D目标检测中单阶段体素法存在感受野固定、特征尺度单一,导致模型对点云特征学习不够充分、模型检测效果存在瓶颈等问题,提出了一种可端对端训练的基于体素的单阶段3D目标检测模型.首先,利用多尺度稀疏空间特征聚合... 针对目前基于点云的3D目标检测中单阶段体素法存在感受野固定、特征尺度单一,导致模型对点云特征学习不够充分、模型检测效果存在瓶颈等问题,提出了一种可端对端训练的基于体素的单阶段3D目标检测模型.首先,利用多尺度稀疏空间特征聚合模块,聚合点云在不同稀疏空间尺度上的特征,使特征充分保留点云的空间信息;然后,对特征进行分层激励,通过多尺度感受野对特征进行分层学习,强化特征的表达能力,降低噪声信息对检测结果的影响;最后,将特征输入检测头进行候选框的分类和回归.在公开的自动驾驶数据集KITTI上与主流单阶段3D目标检测模型进行了对比实验,包含对3类目标共9个的难度等级目标的检测.所提模型在其中5个等级中的平均准确率有明显提升,尤其对点云稀疏的目标,表现出较好的检测效果.实验结果表明,所提模型能够充分提取点云空间信息并有效地学习点云多尺度特征. 展开更多
关键词 3D目标检测 激光雷达点云 多尺度稀疏空间特征聚合 分层激励
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部