期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高效稀疏特征聚合的点云语义分割方法
1
作者
胡立坤
王小勇
黄润辉
《广西大学学报(自然科学版)》
北大核心
2025年第3期558-569,共12页
针对现有大规模场景点云语义分割方法效率低、难以满足实时性和大规模场景边界分割精度低的问题,提出一种高效稀疏特征聚合的点云语义分割方法。该方法以锥形栅格表述输入点云,设计高效稀疏特征聚合模块学习上下文语义特征,解决了特征...
针对现有大规模场景点云语义分割方法效率低、难以满足实时性和大规模场景边界分割精度低的问题,提出一种高效稀疏特征聚合的点云语义分割方法。该方法以锥形栅格表述输入点云,设计高效稀疏特征聚合模块学习上下文语义特征,解决了特征提取计算量大、内存效率低的问题;通过邻域内语义标签单一性设计边界损失函数,解决物体边界模糊问题。实验表明:该方法在SemanticKITTI和nuScenes数据集上的语义分割平均交并比(mIoU)分别达到66.9%和74.1%,相比算法VCL分别提高了3.3、3.6个百分点;在SemanticKITTI验证集上推理速度达到19.2 Hz,远超该数据集点云采集频率10 Hz,满足实时性要求。本文方法能够更高效地提取稀疏语义特征,并能对物体边界进行准确分割。
展开更多
关键词
稀疏特征聚合
边界损失
语义分割
点云
在线阅读
下载PDF
职称材料
基于点云稀疏空间特征聚合激励的单阶段3D目标检测模型
被引量:
1
2
作者
鲁斌
孙洋
杨振宇
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第5期721-733,共13页
针对目前基于点云的3D目标检测中单阶段体素法存在感受野固定、特征尺度单一,导致模型对点云特征学习不够充分、模型检测效果存在瓶颈等问题,提出了一种可端对端训练的基于体素的单阶段3D目标检测模型.首先,利用多尺度稀疏空间特征聚合...
针对目前基于点云的3D目标检测中单阶段体素法存在感受野固定、特征尺度单一,导致模型对点云特征学习不够充分、模型检测效果存在瓶颈等问题,提出了一种可端对端训练的基于体素的单阶段3D目标检测模型.首先,利用多尺度稀疏空间特征聚合模块,聚合点云在不同稀疏空间尺度上的特征,使特征充分保留点云的空间信息;然后,对特征进行分层激励,通过多尺度感受野对特征进行分层学习,强化特征的表达能力,降低噪声信息对检测结果的影响;最后,将特征输入检测头进行候选框的分类和回归.在公开的自动驾驶数据集KITTI上与主流单阶段3D目标检测模型进行了对比实验,包含对3类目标共9个的难度等级目标的检测.所提模型在其中5个等级中的平均准确率有明显提升,尤其对点云稀疏的目标,表现出较好的检测效果.实验结果表明,所提模型能够充分提取点云空间信息并有效地学习点云多尺度特征.
展开更多
关键词
3D目标检测
激光雷达点云
多尺度
稀疏
空间
特征
聚合
分层激励
在线阅读
下载PDF
职称材料
题名
高效稀疏特征聚合的点云语义分割方法
1
作者
胡立坤
王小勇
黄润辉
机构
广西大学电气工程学院
出处
《广西大学学报(自然科学版)》
北大核心
2025年第3期558-569,共12页
基金
国家自然科学基金项目(61863002)
广西重点研发计划项目(桂科AB21220039)。
文摘
针对现有大规模场景点云语义分割方法效率低、难以满足实时性和大规模场景边界分割精度低的问题,提出一种高效稀疏特征聚合的点云语义分割方法。该方法以锥形栅格表述输入点云,设计高效稀疏特征聚合模块学习上下文语义特征,解决了特征提取计算量大、内存效率低的问题;通过邻域内语义标签单一性设计边界损失函数,解决物体边界模糊问题。实验表明:该方法在SemanticKITTI和nuScenes数据集上的语义分割平均交并比(mIoU)分别达到66.9%和74.1%,相比算法VCL分别提高了3.3、3.6个百分点;在SemanticKITTI验证集上推理速度达到19.2 Hz,远超该数据集点云采集频率10 Hz,满足实时性要求。本文方法能够更高效地提取稀疏语义特征,并能对物体边界进行准确分割。
关键词
稀疏特征聚合
边界损失
语义分割
点云
Keywords
sparse feature aggregation
boundary loss
semantic segmentation
point cloud
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于点云稀疏空间特征聚合激励的单阶段3D目标检测模型
被引量:
1
2
作者
鲁斌
孙洋
杨振宇
机构
华北电力大学控制与计算机工程学院
复杂能源系统智能计算教育部工程研究中心
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024年第5期721-733,共13页
基金
河北省重点研发计划(20310103D).
文摘
针对目前基于点云的3D目标检测中单阶段体素法存在感受野固定、特征尺度单一,导致模型对点云特征学习不够充分、模型检测效果存在瓶颈等问题,提出了一种可端对端训练的基于体素的单阶段3D目标检测模型.首先,利用多尺度稀疏空间特征聚合模块,聚合点云在不同稀疏空间尺度上的特征,使特征充分保留点云的空间信息;然后,对特征进行分层激励,通过多尺度感受野对特征进行分层学习,强化特征的表达能力,降低噪声信息对检测结果的影响;最后,将特征输入检测头进行候选框的分类和回归.在公开的自动驾驶数据集KITTI上与主流单阶段3D目标检测模型进行了对比实验,包含对3类目标共9个的难度等级目标的检测.所提模型在其中5个等级中的平均准确率有明显提升,尤其对点云稀疏的目标,表现出较好的检测效果.实验结果表明,所提模型能够充分提取点云空间信息并有效地学习点云多尺度特征.
关键词
3D目标检测
激光雷达点云
多尺度
稀疏
空间
特征
聚合
分层激励
Keywords
3D object detection
light detection and ranging point clouds
multi-scale feature aggregation
hier-archical excitation
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
高效稀疏特征聚合的点云语义分割方法
胡立坤
王小勇
黄润辉
《广西大学学报(自然科学版)》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于点云稀疏空间特征聚合激励的单阶段3D目标检测模型
鲁斌
孙洋
杨振宇
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部