期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征稀疏化的粉尘图像深度预测
被引量:
2
1
作者
贾慧敏
王园宇
《太原理工大学学报》
CAS
北大核心
2023年第5期853-860,共8页
【目的】针对粉尘环境中单幅图像深度预测精度低的问题,提出了一种基于输入特征稀疏化的粉尘图像深度预测网络。【方法】使用粉尘图像的直接传输率与深度的关系设计预估计深度网络,利用图像颜色衰减先验原理进一步获取粉尘图像的稀疏深...
【目的】针对粉尘环境中单幅图像深度预测精度低的问题,提出了一种基于输入特征稀疏化的粉尘图像深度预测网络。【方法】使用粉尘图像的直接传输率与深度的关系设计预估计深度网络,利用图像颜色衰减先验原理进一步获取粉尘图像的稀疏深度特征。将该稀疏深度特征与粉尘图像一起作为深度预测网络的输入。深度预测网络以“编码器-解码器”为模型框架,编码器中使用残差网络(ResNet)对粉尘图像进行编码,设计融合通道注意力机制的稀疏卷积网络对稀疏深度特征进行编码。解码器中采用反卷积以及多尺度上采样的方法,以更好的重建稠密的深度信息。使用最小绝对值损失和结构相似性损失作为边缘保持损失函数。【结论】在NYU-Depth-v2数据集上的实验结果表明该方法能够从粉尘图像中有效预测深度信息,平均相对误差降低到0.054,均方根误差降低到0.610,在δ<1.25时准确率达到0.967.
展开更多
关键词
粉尘图像
稀疏深度样本
深度
预测
颜色衰减先验
残差网络
稀疏
卷积
在线阅读
下载PDF
职称材料
题名
基于特征稀疏化的粉尘图像深度预测
被引量:
2
1
作者
贾慧敏
王园宇
机构
太原理工大学信息与计算机学院
出处
《太原理工大学学报》
CAS
北大核心
2023年第5期853-860,共8页
基金
山西省自然科学基金资助项目(201801D121142)
山西省回国留学人员科研资助项目。
文摘
【目的】针对粉尘环境中单幅图像深度预测精度低的问题,提出了一种基于输入特征稀疏化的粉尘图像深度预测网络。【方法】使用粉尘图像的直接传输率与深度的关系设计预估计深度网络,利用图像颜色衰减先验原理进一步获取粉尘图像的稀疏深度特征。将该稀疏深度特征与粉尘图像一起作为深度预测网络的输入。深度预测网络以“编码器-解码器”为模型框架,编码器中使用残差网络(ResNet)对粉尘图像进行编码,设计融合通道注意力机制的稀疏卷积网络对稀疏深度特征进行编码。解码器中采用反卷积以及多尺度上采样的方法,以更好的重建稠密的深度信息。使用最小绝对值损失和结构相似性损失作为边缘保持损失函数。【结论】在NYU-Depth-v2数据集上的实验结果表明该方法能够从粉尘图像中有效预测深度信息,平均相对误差降低到0.054,均方根误差降低到0.610,在δ<1.25时准确率达到0.967.
关键词
粉尘图像
稀疏深度样本
深度
预测
颜色衰减先验
残差网络
稀疏
卷积
Keywords
dust image
sparse depth sample
depth prediction
color attenuation prior
resid-ual network
sparse convolution
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征稀疏化的粉尘图像深度预测
贾慧敏
王园宇
《太原理工大学学报》
CAS
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部