期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
组加权约束的核稀疏表示分类算法 被引量:4
1
作者 郑建炜 杨平 +1 位作者 王万良 白琮 《计算机研究与发展》 EI CSCD 北大核心 2016年第11期2567-2582,共16页
提出了一种称为核加权组稀疏表示分类器(kernel weighted group sparse representation classifier,KWGSC)的新型模式分类算法.通过在核特征空间而非原输入空间引入组稀疏性和保局性,KWGSC能够获得更有效的鉴别性重构系数用于分类表示.... 提出了一种称为核加权组稀疏表示分类器(kernel weighted group sparse representation classifier,KWGSC)的新型模式分类算法.通过在核特征空间而非原输入空间引入组稀疏性和保局性,KWGSC能够获得更有效的鉴别性重构系数用于分类表示.为获得最优重构系数,提出了一种新的迭代更新策略进行模型求解并给出了相应的收敛性证明以及复杂度分析.对比现存表示型分类算法,KWGSC具有的优势包括:1)通过隐含映射变换,巧妙地规避了经典线性表示算法所固有的规范化问题;2)通过联合引入距离加权约束和重构冗余约束,精确地推导出查询样本的目标类别标签;3)引入l2,p正则项调整协作机制中的稀疏性,获得更佳的分类性能.人造数值实验表明:经典线性表示型算法在非范数归一化条件下无法找到正确的重构样本,而KWGSC却未受影响.实际的公共数据库验证了所提分类算法具有鲁棒的鉴别力,其综合性能明显优于现存算法. 展开更多
关键词 稀疏表示技术 保局性 稀疏正则项 核技术 范数归一化问题
在线阅读 下载PDF
一种基于雨线主方向自适应的全局稀疏去雨模型
2
作者 王科平 蔡凯利 +1 位作者 王红旗 杨艺 《智能系统学报》 CSCD 北大核心 2020年第2期271-280,共10页
针对现有单幅图像去雨算法较少考虑风力对雨线主方向产生影响的问题,当雨线偏离垂直方向时,现有方法未采取旋转或者只进行大致旋转,去雨后的结果图出现了雨线残留明显或背景模糊化的现象。因此,本文提出了一种基于雨线主方向自适应的全... 针对现有单幅图像去雨算法较少考虑风力对雨线主方向产生影响的问题,当雨线偏离垂直方向时,现有方法未采取旋转或者只进行大致旋转,去雨后的结果图出现了雨线残留明显或背景模糊化的现象。因此,本文提出了一种基于雨线主方向自适应的全局稀疏去雨模型。首先,将方差最小的图像块与图像库的雨线图依据HOG特征进行匹配,将匹配度最高的雨线图主方向视作待处理雨图的雨线主方向,从而确定全局稀疏模型的旋转角。然后,通过3个包含旋转角的稀疏正则项构建全局稀疏模型进行去雨。最后,通过颜色掩膜对全局稀疏模型去雨后的部分背景进行保护,再与原来的CbCr通道重组,得到最终的去雨图。研究结果表明:在峰值信噪比和结构相似性方面,本文算法均比3种典型的对比算法有所提高,且运行时间相对短。本文算法在有效去除雨线的同时,可较大程度地保留图像的背景细节信息。 展开更多
关键词 单幅图像去雨 雨线主方向 图像分块 HOG特征 全局稀疏模型 稀疏正则项 颜色掩膜 通道重组
在线阅读 下载PDF
基于L_(2,p)矩阵范数稀疏表示的图像分类方法 被引量:6
3
作者 时中荣 王胜 刘传才 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第1期80-89,共10页
为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一... 为了提高基于稀疏表示分类算法的分类精度,该文充分利用同类样本的非零系数高度集中的特点,提出一种用l2,p矩阵范数进行稀疏约束的基于稀疏表示的分类方法。该算法的训练阶段,构造的目标函数主要包括三个部分:重构误差、稀疏矩阵类内一致性约束、稀疏矩阵类间不一致性约束,其中的稀疏矩阵类内一致性约束用l2,p矩阵范数实现。该算法的测试阶段,计算新样本的稀疏重构系数以用于分类。和传统的基于稀疏表示的分类方法比较,该方法求稀疏重构系数时对样本不再单个处理,而是对同类样本整体处理,且充分利用同类样本的相似性和不同类样本的相异性,提高了基于稀疏表示的图像分类方法的分类精度。实验结果表明:该方法进一步提高了图像分类的准确率,在AR、Extended Yale B和Fifteen Scene Category数据库上和基于稀疏表示的分类方法(Sparse representation based classification,SRC)相比较,识别率分别提高了20.11%、20.88%和2.13%。 展开更多
关键词 图像分类 稀疏表示 稀疏分类 矩阵范数 稀疏编码 字典学习 稀疏正则项 稀疏诱导范数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部