期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于增量稀疏核极限学习机的柴油机故障在线诊断 被引量:7
1
作者 刘敏 张英堂 +1 位作者 李志宁 范红波 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第2期217-224,共8页
为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的... 为实现柴油机故障在线诊断,提出了基于增量稀疏核极限学习机(ISKELM)的快速在线诊断方法.针对核在线学习中的样本稀疏化与模型膨胀问题,提出了基于瞬时信息测量的稀疏核函数字典构造策略,根据最小化字典冗余和最大化字典元素自信息量的原则实现样本前向稀疏与后向删减,在最佳阶数内对字典进行在线扩充与修剪,从而建立阶数有限且结构稀疏的诊断模型.针对模型核权重矩阵更新问题,提出了增样学习与改进减样学习算法对核权重矩阵进行在线递推求解,降低了计算复杂度,提高了模型在线更新速度.UCI标准数据与柴油机故障数据分类实验结果表明,与几类现有在线诊断算法相比,ISKELM在保证较高分类精度的同时,极大地提高了在线建模速度,更加快速准确地实现了柴油机故障在线诊断. 展开更多
关键词 增量稀疏极限学习 样本稀疏 瞬时信息测量 稀疏函数字典 减样学习 在线诊断
在线阅读 下载PDF
基于相关向量机的图像阈值技术 被引量:10
2
作者 乔立山 陈松灿 王敏 《计算机研究与发展》 EI CSCD 北大核心 2010年第8期1329-1337,共9页
图像阈值化是一种直观有效的图像分割技术,在图像分析、模式识别及计算机视觉中具有重要应用.传统的阈值化方法通常基于某个特定的优化问题,需要在整个灰度范围内搜索最佳阈值(或阈值组合).最近,基于支持向量回归(SVR)的多阈值分割算法... 图像阈值化是一种直观有效的图像分割技术,在图像分析、模式识别及计算机视觉中具有重要应用.传统的阈值化方法通常基于某个特定的优化问题,需要在整个灰度范围内搜索最佳阈值(或阈值组合).最近,基于支持向量回归(SVR)的多阈值分割算法,直接从支持向量(SV)中获得阈值信息,无需对图像施加任何先验假设,并避免了繁琐的优化过程.然而:1.如何从众多SV中获得可靠的阈值尚待解决(SVR阈值方法的公开问题);2.虽然SVR阈值技术避免了传统多阈值算法可能出现的组合优化问题,但是其中超参数的选择往往需要耗时的交叉验证;3.算法在单峰直方图情形下失效.针对这些问题,并受相关向量机(RVM)方法的启发,提出了一种新的基于RVM的多阈值自动选择技术.由于RVM可以极大地约减"SV"数目,并且无需交叉验证进行参数调整,使得最终阈值的确定更加高效、可靠且异常容易;另外所提算法能有效地处理单峰直方图情形,使阈值分割具有更强的适应性.实验表明基于RVM的阈值技术不仅保留了SVR阈值技术的优点,而且解决了其中的公开问题,并显著地提高了算法的效率和适应能力. 展开更多
关键词 图像分割 自动阈值选择 相关向量 支持向量回归 稀疏核机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部