期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
考虑时空关联的道路行程速度稀疏数据修复与解释性算法
1
作者
徐韬
任其亮
+1 位作者
张磊
程龙春
《铁道科学与工程学报》
北大核心
2025年第1期77-88,共12页
为研究拓扑路网中稀疏数据路段行程速度与其空间关联道路间的耦合影响,以路网中空间距离分布为基础,明确了道路空间关联指数(road spatial correlation index,RSCI)定义和计算方法,构建了一种面向道路行程速度稀疏数据修复和可解释性模...
为研究拓扑路网中稀疏数据路段行程速度与其空间关联道路间的耦合影响,以路网中空间距离分布为基础,明确了道路空间关联指数(road spatial correlation index,RSCI)定义和计算方法,构建了一种面向道路行程速度稀疏数据修复和可解释性模型。首先,在传统轮盘算法基础上提出了针对选择操作和算子的改进遗传算法(improved genetic algorithm,IGA),利用自适应机制优化个体选择概率,通过设置常数λ解决后续优秀个体选择概率偏低缺陷,提高模型收敛性能。其次,利用IGA和K折交叉验证(K-fold cross validation,K-Fold CV)实现极限梯度提升算法(extreme gradient boosting,XGBoost)中n_estimators、Learning_rate、Min_child_weight、Max_depth超参数寻优。然后,利用SHAP(shapey additive explanation,SHAP)方法对XGBoost模型各特征重要性开展全局解释和个体样本溯源分析。最后,以目标道路行程速度为输出、连接道路行程速度为特征输入进行实例验证。研究结果表明:IGA-XGBoost组合算法f_(MAE)、f_(RMSE)分别为1.95、2.66,R^(2)为0.941,较GA-XGBoost提高0.4%,模型运行时间为1.532 s,较GA-XGBoost运行时间减少7.6%,组合算法预测精度更高,迭代效率有明显提升;以SHAP值标定特征重要性下,连接道路特征重要性与其RSCI呈正相关,RSCI数值越大,连接道路对预测结果贡献越高;在连接道路数量不足时,以SHAP值排名前3的连接道路对目标道路数据填补时,模型f_(MAE)、f_(RMSE)、R^(2)分别为2.53、3.30、0.905,仍能取得较好的数据修复精度,证明了方法的适用性。研究结果可为城市道路行程车速数据修复填补提供新思路。
展开更多
关键词
智能交通
稀疏数据修复
改进遗传算法
XGBoost
SHAP算法
在线阅读
下载PDF
职称材料
题名
考虑时空关联的道路行程速度稀疏数据修复与解释性算法
1
作者
徐韬
任其亮
张磊
程龙春
机构
重庆交通大学交通运输学院
重庆设计集团有限公司城市建设策略研究院
出处
《铁道科学与工程学报》
北大核心
2025年第1期77-88,共12页
基金
国家社会科学基金资助项目(21BJY038)
四川省科技创新合作项目(2020YFH0038)
+1 种基金
教育部人文社会科学基金青年基金资助项目(20XJCZH011)
重庆设计集团有限公司2023年度科研项目(2023-A2)。
文摘
为研究拓扑路网中稀疏数据路段行程速度与其空间关联道路间的耦合影响,以路网中空间距离分布为基础,明确了道路空间关联指数(road spatial correlation index,RSCI)定义和计算方法,构建了一种面向道路行程速度稀疏数据修复和可解释性模型。首先,在传统轮盘算法基础上提出了针对选择操作和算子的改进遗传算法(improved genetic algorithm,IGA),利用自适应机制优化个体选择概率,通过设置常数λ解决后续优秀个体选择概率偏低缺陷,提高模型收敛性能。其次,利用IGA和K折交叉验证(K-fold cross validation,K-Fold CV)实现极限梯度提升算法(extreme gradient boosting,XGBoost)中n_estimators、Learning_rate、Min_child_weight、Max_depth超参数寻优。然后,利用SHAP(shapey additive explanation,SHAP)方法对XGBoost模型各特征重要性开展全局解释和个体样本溯源分析。最后,以目标道路行程速度为输出、连接道路行程速度为特征输入进行实例验证。研究结果表明:IGA-XGBoost组合算法f_(MAE)、f_(RMSE)分别为1.95、2.66,R^(2)为0.941,较GA-XGBoost提高0.4%,模型运行时间为1.532 s,较GA-XGBoost运行时间减少7.6%,组合算法预测精度更高,迭代效率有明显提升;以SHAP值标定特征重要性下,连接道路特征重要性与其RSCI呈正相关,RSCI数值越大,连接道路对预测结果贡献越高;在连接道路数量不足时,以SHAP值排名前3的连接道路对目标道路数据填补时,模型f_(MAE)、f_(RMSE)、R^(2)分别为2.53、3.30、0.905,仍能取得较好的数据修复精度,证明了方法的适用性。研究结果可为城市道路行程车速数据修复填补提供新思路。
关键词
智能交通
稀疏数据修复
改进遗传算法
XGBoost
SHAP算法
Keywords
intelligent transportation
sparse data repair
improved genetic algorithm
XGBoost
SHAP algorithm
分类号
U495 [交通运输工程—交通运输规划与管理]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
考虑时空关联的道路行程速度稀疏数据修复与解释性算法
徐韬
任其亮
张磊
程龙春
《铁道科学与工程学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部