逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂...逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率.展开更多
文摘在高压并联电抗器声纹信号监测系统中,长时海量无标签声纹的高维非平稳性导致特征提取困难、无监督聚类适应性差。由此提出了一种基于深度自适应K-means++算法(deep adaptive K-means++clustering algorithm,DAKCA)的750 kV电抗器声纹聚类方法。首先通过采用两阶段无监督策略微调的改进堆叠稀疏自编码器(stacked sparse autoencoder,SSAE),对快速傅里叶变换后的归一化频域数据提取电抗器原始声纹32维深度特征。进一步提出了依据最近邻聚类有效性指标(clustering validation index based on nearest neighbors,CVNN)的自适应K-means++聚类算法,构建了能自适应确定最优聚类个数的电抗器声纹聚类模型。最后通过西北地区某750 kV电抗器实测声纹数据集进行了验证。结果表明,DAKCA算法对无标签声纹数据在不同样本均衡程度下能够稳定提取32维深度特征,并实现最优聚类,为直接高效利用电抗器无标签声纹数据提供了参考。
文摘大规模稀疏多目标优化问题(Sparse Multiobjective Optimization Problems,SMOPs)广泛存在于现实世界。为大规模SMOPs提出通用的解决方法,对于进化计算、控制论和机器学习等领域中的问题解决都具有推动作用。由于SMOPs具有高维决策空间和Pareto最优解稀疏的特性,现有的进化算法在解决SMOPs时,很容易陷入维数灾难的困境。针对这个问题,以稀疏分布的学习为切入点,提出了一种基于在线学习稀疏特征的大规模多目标进化算法(Large-scale Multiobjective Evolutio-nary Algorithm Based on Online Learning of Sparse Features,MOEA/OLSF)。具体地,首先设计了一种在线学习稀疏特征的方法来挖掘非零变量;然后提出了一种稀疏遗传算子,用于非零变量的进一步搜索和子代解的生成,在非零变量搜索过程中,其二进制交叉和变异算子也用于控制解的稀疏性和多样性。与最新的优秀算法在不同规模的测试问题上的对比结果表明,所提算法在收敛速度和性能方面均更优。
文摘逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率.