压缩感知理论是一种利用信号稀疏性或可压缩性对信号进行采样同时压缩的新颖的信号采样理论。针对稀疏度未知信号重构问题,提出了一种稀疏度自适应正交多匹配追踪重构算法。该算法在广义正交匹配算法(generalized orthogonal multi matc...压缩感知理论是一种利用信号稀疏性或可压缩性对信号进行采样同时压缩的新颖的信号采样理论。针对稀疏度未知信号重构问题,提出了一种稀疏度自适应正交多匹配追踪重构算法。该算法在广义正交匹配算法(generalized orthogonal multi matching pursuit,GOMP)基础上结合稀疏自适应思想。根据相邻阶段信号能量差自适应调整当前步长大小选取支撑集的原子个数,先大步接近,后小步逼近信号真实稀疏度,从而实现对信号精确重构。实验仿真结果表明,该算法能有效精确重构信号。具有良好的重构性能和较高的重构效率。展开更多
针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏...针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏度估计准确度的影响。仿真结果表明,当信噪比高于3 d B时,利用400个观测样本该算法就能获得90%以上的频谱检测概率,宽带频谱感知性能优于已有算法。展开更多
文摘压缩感知理论是一种利用信号稀疏性或可压缩性对信号进行采样同时压缩的新颖的信号采样理论。针对稀疏度未知信号重构问题,提出了一种稀疏度自适应正交多匹配追踪重构算法。该算法在广义正交匹配算法(generalized orthogonal multi matching pursuit,GOMP)基础上结合稀疏自适应思想。根据相邻阶段信号能量差自适应调整当前步长大小选取支撑集的原子个数,先大步接近,后小步逼近信号真实稀疏度,从而实现对信号精确重构。实验仿真结果表明,该算法能有效精确重构信号。具有良好的重构性能和较高的重构效率。
文摘针对在低信噪比、观测点数较少情况下稀疏度的欠估计问题,提出了一种基于贝叶斯预测密度的弱匹配追踪频谱检测算法。该算法利用贝叶斯预测密度理论推导出罚函数,然后引入弱匹配策略于Co Sa MP算法,提高频谱支撑集估计性能,且减弱受稀疏度估计准确度的影响。仿真结果表明,当信噪比高于3 d B时,利用400个观测样本该算法就能获得90%以上的频谱检测概率,宽带频谱感知性能优于已有算法。