行人重识别问题是计算机视觉的重要研究内容之一,旨在将多个非重叠相机中的目标行人准确加以识别。当将某摄像机中的行人图像视为目标行人在该摄像机视图上的一种表示时,行人重识别可被认为是一种多视图学习问题。在此基础上提出的基于...行人重识别问题是计算机视觉的重要研究内容之一,旨在将多个非重叠相机中的目标行人准确加以识别。当将某摄像机中的行人图像视为目标行人在该摄像机视图上的一种表示时,行人重识别可被认为是一种多视图学习问题。在此基础上提出的基于典型相关分析的行人重识别算法仅是一种线性降维算法,很难从复杂的重识别系统(如目标行人图像受低分辨率、光照及行人姿态变化等因素影响)中提取有效的高层语义信息,用于行人重识别。为此,本文提出了一种基于稀疏学习的行人重识别算法(Sparsity learning based person re-identification,SLR)。SLR首先通过稀疏学习获取目标行人在每一相机视图上的高层语义表示,然后将高层特征映射到一个公共的隐空间,使不同视图间的特征距离可比较。SLR算法的优点在于通过学习鲁棒的行人图像特征表示,能够获得更具判别性的公共隐空间,以提高算法的行人重识别性能。在VIPeR、CUHK数据集上的实验结果表明了本文算法的有效性。展开更多
在微表情识别系统中,常规的特征融合方法会引入冗余或干扰特征,因而会影响识别准确率和效率。针对上述问题,提出一种基于双支路核化群稀疏学习(Two-Branch Kernelized Groups Sparse Learning, TB-KGSL)的特征选择方法,并将其应用于微...在微表情识别系统中,常规的特征融合方法会引入冗余或干扰特征,因而会影响识别准确率和效率。针对上述问题,提出一种基于双支路核化群稀疏学习(Two-Branch Kernelized Groups Sparse Learning, TB-KGSL)的特征选择方法,并将其应用于微表情识别系统。首先,提取多个人脸区域的3个正交平面上局部二值模式(Local Binary Patterns from Three Orthogonal Planes, LBP-TOP)和多个方向上的单方向梯度直方图(Histogram of Single Direction Gradient, HSDG)两组不同类型的特征;然后,使用TB-KGSL模型从上述两组特征中分别选择有效区域的LBP-TOP特征和有效方向上的HSDG特征;最后,将选择的LBP-TOP和HSDG特征进行拼接融合,得到紧凑且可鉴别的特征,并使用基于支持向量机(Support Vector Machine, SVM)的分类器进行微表情分类。实验结果验证了TB-KGSL的可行性和有效性,并在CASME II和SMIC数据集上分别达到68.63%和75.95%的识别准确率,比基线方法分别高出5.77个百分点和15.20个百分点。展开更多
为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化的稀疏贝叶斯学习(sparse Bayesian learning based on improved fast marginal likelihood maximization, IFM-SBL)算法,对水声信道进行低复杂度、高性能的估...为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化的稀疏贝叶斯学习(sparse Bayesian learning based on improved fast marginal likelihood maximization, IFM-SBL)算法,对水声信道进行低复杂度、高性能的估计。特别是在低信噪比情况下,通过阈值去噪和离散傅里叶变换降噪,可以进一步提升算法的性能。仿真和海试结果表明,所提的IFM-SBL信道估计后的输出误码率与基于期望最大化的稀疏贝叶斯学习(sparse Bayesian learning based on expectation maximization, EM-SBL)算法相似,且验证了算法在低信噪比和快慢时变信道中都具有良好的鲁棒性。在运行速度方面,FM-SBL算法与IFM-SBL算法比EM-SBL算法提高了约90%,大大减少了信道估计时间。展开更多
文摘行人重识别问题是计算机视觉的重要研究内容之一,旨在将多个非重叠相机中的目标行人准确加以识别。当将某摄像机中的行人图像视为目标行人在该摄像机视图上的一种表示时,行人重识别可被认为是一种多视图学习问题。在此基础上提出的基于典型相关分析的行人重识别算法仅是一种线性降维算法,很难从复杂的重识别系统(如目标行人图像受低分辨率、光照及行人姿态变化等因素影响)中提取有效的高层语义信息,用于行人重识别。为此,本文提出了一种基于稀疏学习的行人重识别算法(Sparsity learning based person re-identification,SLR)。SLR首先通过稀疏学习获取目标行人在每一相机视图上的高层语义表示,然后将高层特征映射到一个公共的隐空间,使不同视图间的特征距离可比较。SLR算法的优点在于通过学习鲁棒的行人图像特征表示,能够获得更具判别性的公共隐空间,以提高算法的行人重识别性能。在VIPeR、CUHK数据集上的实验结果表明了本文算法的有效性。
文摘在微表情识别系统中,常规的特征融合方法会引入冗余或干扰特征,因而会影响识别准确率和效率。针对上述问题,提出一种基于双支路核化群稀疏学习(Two-Branch Kernelized Groups Sparse Learning, TB-KGSL)的特征选择方法,并将其应用于微表情识别系统。首先,提取多个人脸区域的3个正交平面上局部二值模式(Local Binary Patterns from Three Orthogonal Planes, LBP-TOP)和多个方向上的单方向梯度直方图(Histogram of Single Direction Gradient, HSDG)两组不同类型的特征;然后,使用TB-KGSL模型从上述两组特征中分别选择有效区域的LBP-TOP特征和有效方向上的HSDG特征;最后,将选择的LBP-TOP和HSDG特征进行拼接融合,得到紧凑且可鉴别的特征,并使用基于支持向量机(Support Vector Machine, SVM)的分类器进行微表情分类。实验结果验证了TB-KGSL的可行性和有效性,并在CASME II和SMIC数据集上分别达到68.63%和75.95%的识别准确率,比基线方法分别高出5.77个百分点和15.20个百分点。
文摘为了保证水下设备的长期稳定通信,提出了一种基于改进的快速边缘似然最大化的稀疏贝叶斯学习(sparse Bayesian learning based on improved fast marginal likelihood maximization, IFM-SBL)算法,对水声信道进行低复杂度、高性能的估计。特别是在低信噪比情况下,通过阈值去噪和离散傅里叶变换降噪,可以进一步提升算法的性能。仿真和海试结果表明,所提的IFM-SBL信道估计后的输出误码率与基于期望最大化的稀疏贝叶斯学习(sparse Bayesian learning based on expectation maximization, EM-SBL)算法相似,且验证了算法在低信噪比和快慢时变信道中都具有良好的鲁棒性。在运行速度方面,FM-SBL算法与IFM-SBL算法比EM-SBL算法提高了约90%,大大减少了信道估计时间。