期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
一种用于图像识别的稀疏增强概率协同表示分类算法 被引量:2
1
作者 邓定胜 《实验室研究与探索》 CAS 北大核心 2021年第1期32-35,44,共5页
稀疏表示分类方法在图像遮蔽、弱光等情况下具有良好的应用及识别效果,但在测试样本少的环境下仍具有一定局限。将稀疏表示分类算法联合概率协同表示分类算法,以稀疏表示系数增强概率系统表示分类算法的表示系数,采用FERET、Multi-PIE与... 稀疏表示分类方法在图像遮蔽、弱光等情况下具有良好的应用及识别效果,但在测试样本少的环境下仍具有一定局限。将稀疏表示分类算法联合概率协同表示分类算法,以稀疏表示系数增强概率系统表示分类算法的表示系数,采用FERET、Multi-PIE与FRGC人脸数据库进行实验测试。结果显示,稀疏增强概率协同表示分类算法能够显著提升人脸识别的准确率,相比其他传统表示分类算法的识别准确率有一定程度的提升。研究结论为复杂人脸图像识别场景的应用提供实践参考。 展开更多
关键词 稀疏表示 协同表示 概率增强 图像识别
在线阅读 下载PDF
基于增强字典稀疏表示分类的SAR目标识别方法 被引量:3
2
作者 陈婕 廖志平 《探测与控制学报》 CSCD 北大核心 2020年第3期75-81,共7页
针对合成孔径雷达(SAR)目标识别方法中分类决策存在的不足,提出基于增强字典稀疏表示分类的SAR目标识别方法。该方法通过对原始训练样本进行多信噪比、多分辨率样本构造,进而构建描述能力更强、对于扩展操作条件更稳健的增强字典进而采... 针对合成孔径雷达(SAR)目标识别方法中分类决策存在的不足,提出基于增强字典稀疏表示分类的SAR目标识别方法。该方法通过对原始训练样本进行多信噪比、多分辨率样本构造,进而构建描述能力更强、对于扩展操作条件更稳健的增强字典进而采用稀疏表示分类器提高目标识别的整体性能。基于MSTAR数据集的实验结果表明,该方法在对于3类和10类目标的平均识别率可分别达到98.61%和98.12%,验证其区分多类目标的能力;通过测试在不同信噪比、不同分辨率下的识别性能,验证了该方法对于噪声干扰、分辨率变化具有较强的稳健性。 展开更多
关键词 合成孔径雷达 目标识别 增强字典 稀疏表示分类
在线阅读 下载PDF
联合核稀疏表示和增强字典的SAR目标识别方法 被引量:1
3
作者 李振汕 丁柏圆 《电光与控制》 CSCD 北大核心 2024年第8期44-49,共6页
为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本... 为提高合成孔径雷达(SAR)图像目标识别性能,以传统稀疏表示分类(SRC)为基础,提出联合核稀疏表示分类(KSRC)和增强字典的方法。KSRC在SRC的基础上引入非线性核函数,从而提升分类器对于非线性数据关系的表征能力。增强字典在原始训练样本的基础上,通过噪声添加和部分遮挡扩展原始字典,提升其对典型扩展操作条件的适应能力。同时,增强字典在KSRC的作用下,可以进一步提升对其他相关扩展操作条件的覆盖程度,从而提升识别方法对于多类扩展操作条件的有效性。以MSTAR数据集为基础开展实验,设置了标准操作条件以及噪声干扰、部分遮挡、型号差异等扩展操作条件,实验结果显示了本文方法的优势性能。 展开更多
关键词 合成孔径雷达 目标识别 稀疏表示分类 增强字典 扩展操作条件
在线阅读 下载PDF
加权融合核稀疏和协同表示的高光谱影像分类 被引量:4
4
作者 侯良国 向泽君 楚恒 《计算机工程与设计》 北大核心 2019年第4期1058-1063,共6页
为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系... 为进一步提高表示分类器中基原子对测试样本的表达能力,提出一种加权融合核稀疏和协同表示的高光谱影像分类算法(WKSCRC)。充分利用核函数处理非线性数据的优势,将高光谱影像数据映射到高维核特征空间;对核稀疏表示系数和核协同表示系数进行加权融合,在核融合表示系数下重构分类测试样本。在ROSIS和AVIRIS两个数据集上的仿真结果表明,该算法在精度与稳定性上优于其它传统分类算法。 展开更多
关键词 高光谱分类 稀疏表示 协同表示 核技巧 加权融合
在线阅读 下载PDF
基于自适应协同稀疏表示的多工况故障诊断方法 被引量:6
5
作者 刘小峰 刘万 +1 位作者 孙兵 柏林 《中国电机工程学报》 EI CSCD 北大核心 2021年第18期6371-6380,共10页
针对设备故障诊断中多工况与环境扰动对故障特征表征能力的影响问题,以及故障特征的个体差异性对稀疏分类精度的影响问题,提出基于自适应协同稀疏表示的多工况故障诊断方法。该方法通过各个故障特征在K-SVD稀疏表示中的重构残差构建特... 针对设备故障诊断中多工况与环境扰动对故障特征表征能力的影响问题,以及故障特征的个体差异性对稀疏分类精度的影响问题,提出基于自适应协同稀疏表示的多工况故障诊断方法。该方法通过各个故障特征在K-SVD稀疏表示中的重构残差构建特征稀疏分类性能的评分矩阵,以评分矩阵迭代优化后得到的权值矩阵对输入特征进行协同稀疏表示,更新字典原子与稀疏系数,使得同类故障模式下的稀疏重构误差最小化,不同类故障模式下的稀疏重构误差最大化,以增强每个样本特征的协同稀疏分类性能。该方法避免了多工况故障诊断中敏感特征筛选及特征高维映射的繁琐步骤,无需大量历史故障数据支撑,通过故障特征的自适应协同稀疏表征与稀疏分类器的加权迭代优化,建立最能表征设备故障状态的稀疏字典,有效提升了稀疏分类器对多工况设备故障的鉴别能力。滚动轴承与齿轮箱故障诊断实验结果表明,提出方法比现有的稀疏分类算法与传统的神经网络分类算法,具有更高的故障辨识精度与工况环境鲁棒性。 展开更多
关键词 协同稀疏表示 自适应加权 重构残差 稀疏表示分类 设备故障诊断
在线阅读 下载PDF
基于主元分析和线性判别分析降维的稀疏表示分类 被引量:3
6
作者 那天 宋晓宁 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期286-291,共6页
为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构... 为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构PCA系数进行决策分类。EPCA+线性判别分析(EPCA+LDA)算法在EPCA算法的基础上增加LDA约束模型,提高重构样本的稀疏表示的鉴别性。将该文算法应用于AR和FERET人脸数据库,与扩展SRC(ESRC)、SRC、SRC_PCA、协同表达分类(CRC)算法相比,该文算法有较高的识别率和较低的时间复杂度。将EPCA算法和EPCA+LDA算法应用于FETET数据集,识别率分别为61.46%和59.17%,运行时间分别为383.02 s和220.62 s。 展开更多
关键词 主元分析 线性判别分析 降维 稀疏表示分类 人脸识别 协同表达分类
在线阅读 下载PDF
基于Gabor特征与协同表示的人脸识别算法 被引量:10
7
作者 张宏星 邹刚 +1 位作者 赵键 李志勇 《计算机工程与设计》 CSCD 北大核心 2014年第2期666-670,676,共6页
基于稀疏表示的分类识别算法(SRC)在进行人脸识别处理时需要求解基于l1范数最小化问题,导致SRC方法的计算复杂度较高。基于协同表示和规则最小二乘的分类识别方法 (CRC-RLS),提出SRC算法对于分类的有效性不是取决于基于l1范数的稀疏性,... 基于稀疏表示的分类识别算法(SRC)在进行人脸识别处理时需要求解基于l1范数最小化问题,导致SRC方法的计算复杂度较高。基于协同表示和规则最小二乘的分类识别方法 (CRC-RLS),提出SRC算法对于分类的有效性不是取决于基于l1范数的稀疏性,而是由其内在的协同表示性所决定的,因此将基于l1范数的稀疏性约束条件简化为最小二乘约束问题,算法复杂度得到大幅降低。由于SRC和CRC-RLS算法均采用特征脸作为分类识别的特征矢量,导致识别鲁棒性不强。以人脸图像的规则化扩展Gabor特征作为特征矢量,结合协同表示的方法,提出了一种新的基于Gabor特征与协同表示的人脸识别算法(Gabor-CRC)。实验结果表明,该方法对于人脸图像的光照、表情和姿态等变化具备较强鲁棒性,算法运行速度较快。 展开更多
关键词 人脸识别 稀疏表示 GABOR特征 协同表示 分类算法
在线阅读 下载PDF
基于局部表示的分类方法及其人脸识别应用 被引量:2
8
作者 殷俊 杨万扣 《计算机工程与科学》 CSCD 北大核心 2018年第3期500-506,共7页
基于稀疏表示的分类方法SRC与基于协同表示的分类方法 CRC分别通过L1范数和L2范数最小化获得具有稀疏性的线性表示系数,在人脸识别中取得了很好的效果。为了解决这两种方法没有考虑数据局部信息的问题,提出了基于局部表示的分类方法 LRC... 基于稀疏表示的分类方法SRC与基于协同表示的分类方法 CRC分别通过L1范数和L2范数最小化获得具有稀疏性的线性表示系数,在人脸识别中取得了很好的效果。为了解决这两种方法没有考虑数据局部信息的问题,提出了基于局部表示的分类方法 LRC。LRC使用测试样本局部范围内的训练样本对其进行线性表示,这样获得的局部表示系数在保持稀疏性的同时包含有效的局部信息。另外,通过求解一简单的约束最优化问题,LRC可快速获取局部表示系数。在ORL、YALE以及FERET人脸数据库上的实验结果,表明了LRC的有效性和高效性。 展开更多
关键词 稀疏表示 协同表示 局部表示 分类
在线阅读 下载PDF
多尺度分块协同表示的选择性集成人脸识别算法 被引量:1
9
作者 殷清燕 史加荣 +1 位作者 魏宗田 岳红云 《信号处理》 CSCD 北大核心 2016年第6期707-714,共8页
为了进一步改善人脸识别系统在小样本条件下的识别性能,本文在图像分块协同表示分类算法的基础上,提出了一种新的基于多尺度分块协同表示选择性集成的人脸识别算法。该算法首先通过对各个尺度下的图像子块进行总变差加权,突出具有鉴别... 为了进一步改善人脸识别系统在小样本条件下的识别性能,本文在图像分块协同表示分类算法的基础上,提出了一种新的基于多尺度分块协同表示选择性集成的人脸识别算法。该算法首先通过对各个尺度下的图像子块进行总变差加权,突出具有鉴别能力的局部关键特征子块的判别作用;其次通过多尺度分块协同表示的选择性集成,显著地提高了分类器的泛化能力和稳健性。对于三种不同采集条件下涵盖各种光照、表情和姿态变化的标准人脸数据库进行数值实验,实验结果表明新算法比现有的稀疏表示分类算法具有显著的识别性能和鲁棒性。 展开更多
关键词 稀疏表示分类 分块协同表示 总变差加权 多尺度选择性集成
在线阅读 下载PDF
自适应多阶段线性重构表示分类的人脸识别 被引量:1
10
作者 钱剑滨 陈秀宏 《智能系统学报》 CSCD 北大核心 2020年第5期964-971,共8页
针对以往基于表示的分类(RBC)方法在类别数较多的数据集上性能不佳的问题,提出了一种自适应多阶段线性重构表示的分类(MPRBC)方法。在每一阶段,首先得到L1范数或L2范数正则化的重构表示系数,然后将表示系数按类求和,根据和的大小来选取... 针对以往基于表示的分类(RBC)方法在类别数较多的数据集上性能不佳的问题,提出了一种自适应多阶段线性重构表示的分类(MPRBC)方法。在每一阶段,首先得到L1范数或L2范数正则化的重构表示系数,然后将表示系数按类求和,根据和的大小来选取相似类,并保留相似类中的全部样本作为下一阶段的训练样本。该策略最终产生具有高分类置信度的稀疏类概率分布,根据类系数的大小自适应选择相似的类,提高了分类计算的效率。实验结果表明,该方法分类性能优于其他RBC方法,特别是在类别数较多的数据集上性能提升明显,并且CPU时间保持相对较低水平。 展开更多
关键词 人脸识别 自适应 多阶段 线性重构 表示系数 分类方法 稀疏表示 协同表示 模式识别
在线阅读 下载PDF
多层AR-LBP与WLD特征融合的SA-CRC人脸识别 被引量:1
11
作者 叶枫 叶学义 +1 位作者 罗宵晗 陈泽 《计算机工程与应用》 CSCD 北大核心 2019年第14期134-141,共8页
针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联... 针对非对称局部二值模式(AR-LBP)提取的人脸特征有限,以及协同表示分类(CRC)人脸存在的类间干扰,提出以多层AR-LBP特征及联合韦伯局部描述子(WLD)特征进行补充,并以增加CRC中稀疏性来降低类间干扰。提取人脸图像的多层AR-LBP特征并级联,与从原图像提取的WLD特征级联得到多层AR-LBP与WLD融合特征,采用稀疏增强的协同表示分类(SA-CRC)完成人脸分类。在ORL、Yale和GT公开人脸库上,提出的多层AR-LBP与WLD特征融合算法与AR-LBP特征提取算法、WLD特征提取算法以及多层LBP与HOG特征融合算法相比,识别正确率提高了0.7%~42.6%;当利用SA-CRC取代CRC后,识别正确率进一步得到提高。 展开更多
关键词 非对称局部二值模式(AR-LBP) 韦伯局部描述子(WLD) 协同表示分类(CRC) 稀疏增强的协同表示分类(sa-crc) 特征提取
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部