针对基于稀疏回归的多标签特征选择方法中数据的特征和标签之间线性关系假设不成立的问题,提出一种基于依赖最大化和稀疏回归的多标签特征选择方法(multi-label feature selection with dependence maximization and sparse regression,...针对基于稀疏回归的多标签特征选择方法中数据的特征和标签之间线性关系假设不成立的问题,提出一种基于依赖最大化和稀疏回归的多标签特征选择方法(multi-label feature selection with dependence maximization and sparse regression,DMSR)。构建数据的低维子空间,最大化低维空间与数据的标签空间之间的依赖性,使用希尔伯特-施密特独立性准则作为依赖性的计算依据,将数据从特征空间映射到该低维空间,设计一种交替优化的算法对稀疏回归模型进行求解,得到用于特征选择的投影矩阵。在多个不同类型的多标签数据集上的实验结果表明,所提算法的性能优于其它对比算法。展开更多
风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成...风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。展开更多
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点...稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度.展开更多
逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂...逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率.展开更多
文摘针对基于稀疏回归的多标签特征选择方法中数据的特征和标签之间线性关系假设不成立的问题,提出一种基于依赖最大化和稀疏回归的多标签特征选择方法(multi-label feature selection with dependence maximization and sparse regression,DMSR)。构建数据的低维子空间,最大化低维空间与数据的标签空间之间的依赖性,使用希尔伯特-施密特独立性准则作为依赖性的计算依据,将数据从特征空间映射到该低维空间,设计一种交替优化的算法对稀疏回归模型进行求解,得到用于特征选择的投影矩阵。在多个不同类型的多标签数据集上的实验结果表明,所提算法的性能优于其它对比算法。
文摘偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;其次,建立非参数模型稀疏高斯过程回归(sparse Gaussian process regression,SGPR)估计偏航角零点漂移;最后,利用多个风电场的风电机组实际运行数据对所提方法进行验证,并分析不同诊断模型对数据量的依赖性。结果表明:IF+SGPR方法准确性高,所需数据量少,能够快速诊断偏航角零点漂移;该诊断方法能够应用于各种电场不同型号的风电机组,普适性较高。
文摘风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。
文摘稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度.
文摘逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率.