期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
基于多因素稀疏回归预测模型的商家客流量预测 被引量:1
1
作者 郑增威 杜俊杰 +2 位作者 周燕真 孙霖 霍梅梅 《计算机应用研究》 CSCD 北大核心 2020年第5期1440-1444,共5页
针对智能商业平台中的大数据预测问题,提出一种多因素稀疏回归预测模型。以离散余弦变换为基础,构建包含多个外部因素(节假日、天气、温度)的字典集,通过LASSO方法定量求解稀疏编码模型中各外部因素的影响。实验对2000个商家的客流量进... 针对智能商业平台中的大数据预测问题,提出一种多因素稀疏回归预测模型。以离散余弦变换为基础,构建包含多个外部因素(节假日、天气、温度)的字典集,通过LASSO方法定量求解稀疏编码模型中各外部因素的影响。实验对2000个商家的客流量进行预测。实验结果表明,外部因素不同程度地影响客流量,在预测模型中叠加外部因素后可以有效提高预测的准确性。同时,与其他方法对比表明,多因素稀疏回归预测模型比RNN、ARIMA等模型的预测效果更好。 展开更多
关键词 智能商业平台 客流量预测 稀疏回归 多因素分析 字典学习
在线阅读 下载PDF
稀疏回归和流形学习的无监督特征选择算法 被引量:2
2
作者 周婉莹 马盈仓 +1 位作者 郑毅 杨小飞 《计算机应用研究》 CSCD 北大核心 2020年第9期2634-2639,共6页
针对无标签高维数据的大量出现,对机器学习中无监督特征选择算法进行了研究。提出了一种结合自表示相似矩阵和流形学习的无监督特征选择算法。首先,通过数据的自表示性质,构建相似矩阵,结合低维流形能够表示高维数据结构这一流形学习思... 针对无标签高维数据的大量出现,对机器学习中无监督特征选择算法进行了研究。提出了一种结合自表示相似矩阵和流形学习的无监督特征选择算法。首先,通过数据的自表示性质,构建相似矩阵,结合低维流形能够表示高维数据结构这一流形学习思想,建立一种考虑流形学习的无监督特征选择优化模型。其次,为了保证选择到更有用及更稀疏的特征,采用l2,1范数对优化模型进行约束,使特征之间相互竞争,消除冗余。进而,通过变量交替迭代对优化模型进行求解,并证明了算法的收敛性。最后,通过与其他几个无监督特征算法在四个数据集上的对比实验,证明了所提算法的有效性。 展开更多
关键词 无监督学习 特征选择 稀疏回归 特征流形学习
在线阅读 下载PDF
基于依赖最大化和稀疏回归的多标签特征选择 被引量:1
3
作者 吴喆君 黄睿 《计算机工程与设计》 北大核心 2022年第7期1898-1904,共7页
针对基于稀疏回归的多标签特征选择方法中数据的特征和标签之间线性关系假设不成立的问题,提出一种基于依赖最大化和稀疏回归的多标签特征选择方法(multi-label feature selection with dependence maximization and sparse regression,... 针对基于稀疏回归的多标签特征选择方法中数据的特征和标签之间线性关系假设不成立的问题,提出一种基于依赖最大化和稀疏回归的多标签特征选择方法(multi-label feature selection with dependence maximization and sparse regression,DMSR)。构建数据的低维子空间,最大化低维空间与数据的标签空间之间的依赖性,使用希尔伯特-施密特独立性准则作为依赖性的计算依据,将数据从特征空间映射到该低维空间,设计一种交替优化的算法对稀疏回归模型进行求解,得到用于特征选择的投影矩阵。在多个不同类型的多标签数据集上的实验结果表明,所提算法的性能优于其它对比算法。 展开更多
关键词 多标签学习 特征选择 依赖最大化 稀疏回归 低维空间
在线阅读 下载PDF
基于稀疏高斯过程回归健康模型的抽蓄机组轴系健康状态评估方法
4
作者 张启航 张孝远 +2 位作者 张宇翔 高玉峰 马驰 《水电能源科学》 北大核心 2025年第3期173-176,共4页
抽水蓄能机组(以下简称抽蓄机组)在高比例新能源电力系统中担任调能角色,对其设备开展实时健康评估对机组本身及其互联电力系统的安全均有重要意义。针对当前研究在揭示机组性能退化的不确定性、状态评估实时性方面存在的不足,提出了一... 抽水蓄能机组(以下简称抽蓄机组)在高比例新能源电力系统中担任调能角色,对其设备开展实时健康评估对机组本身及其互联电力系统的安全均有重要意义。针对当前研究在揭示机组性能退化的不确定性、状态评估实时性方面存在的不足,提出了一种结合小波阈值降噪(WNR)和稀疏高斯过程回归(SGPR)的抽蓄机组健康状态评估方法。该方法首先采用WNR对监测数据进行降噪以提升数据质量,然后采用抽蓄机组健康运行时刻的数据基于SGPR构造抽蓄机组的健康基准模型(HBM)。在评估时刻,采用在线采集的性能参数与HBM预测得到的健康性能参数的偏差来量化机组的劣化情况。区别于传统的点估计方法,SGPR的输出作为机组性能的合理区间,可量化机组劣化中的不确定性。实例验证表明,与其他方法相比,所提方法在95%置信水平下,拥有最好的区间覆盖率及狭窄的区间宽度,并在计算耗时上相较于传统的高斯过程回归(GPR)方法降低了90%。工程实际检修数据验证了所提方法的有效性。 展开更多
关键词 健康状态评估 稀疏高斯过程回归 小波降噪 抽水蓄能机组
在线阅读 下载PDF
基于变分稀疏高斯过程的多机器人协同感知与围捕
5
作者 曹凯 陈阳泉 +3 位作者 魏云博 刘志 陈超波 高嵩 《自动化学报》 北大核心 2025年第4期778-791,共14页
针对未知环境下的多机器人环境感知和围捕问题,提出一种基于变分稀疏高斯过程回归的分布式感知与围捕算法.考虑到传统高斯过程回归不适合处理大量数据的问题,在这项工作中,首先考虑障碍物的影响,以引入分离超平面的质心维诺划分算法为... 针对未知环境下的多机器人环境感知和围捕问题,提出一种基于变分稀疏高斯过程回归的分布式感知与围捕算法.考虑到传统高斯过程回归不适合处理大量数据的问题,在这项工作中,首先考虑障碍物的影响,以引入分离超平面的质心维诺划分算法为机器人动态规划任务区域;其次,利用多机器人在任务区域中的移动探索获取环境信息,并通过变分自由方法来近似模型的后验分布,完成对未知环境的感知;最后,基于粒子群优算法为围捕机器人动态分配围捕点,实现多机器人的全方位均匀围捕.通过仿真实验证明,该算法能够适用于单源、多源以及动态源的围捕,且能够在保证多机器人编队安全性的同时,实现较高的迭代速度,最终成功实现均匀围捕. 展开更多
关键词 多机器人 质心维诺划分 变分稀疏高斯过程回归 围捕 协同感知
在线阅读 下载PDF
基于孤立森林与稀疏高斯过程回归的风电机组偏航角零点漂移诊断方法 被引量:22
6
作者 杨建 王力 +3 位作者 宋冬然 董密 陈思范 黄凌翔 《中国电机工程学报》 EI CSCD 北大核心 2021年第18期6198-6211,共14页
偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;... 偏航角零点漂移严重影响风电机组性能,将之消除的前提是对其进行可靠且快速的检测。基于风能捕获机理,该文提出一种运用机器学习算法的偏航角零点漂移诊断方法。首先,采用孤立森林(isolated forest,IF)异常值检测算法对数据进行预处理;其次,建立非参数模型稀疏高斯过程回归(sparse Gaussian process regression,SGPR)估计偏航角零点漂移;最后,利用多个风电场的风电机组实际运行数据对所提方法进行验证,并分析不同诊断模型对数据量的依赖性。结果表明:IF+SGPR方法准确性高,所需数据量少,能够快速诊断偏航角零点漂移;该诊断方法能够应用于各种电场不同型号的风电机组,普适性较高。 展开更多
关键词 风电机组 零点漂移 偏航角 偏航误差 孤立森林 稀疏高斯过程回归
在线阅读 下载PDF
基于稀疏高斯过程回归的强/台风作用下大跨度桥梁风振响应概率预测 被引量:6
7
作者 张一鸣 王浩 茅建校 《土木工程学报》 EI CSCD 北大核心 2022年第10期72-79,共8页
针对有限元模型、风洞试验等难以实时预测风振响应的问题,提出基于稀疏高斯过程回归的强/台风作用下大跨度桥梁风振响应概率预测方法。该方法从数据驱动的角度出发,采用稀疏近似方法降低常规高斯过程模型存储空间,将风特性参数与风振响... 针对有限元模型、风洞试验等难以实时预测风振响应的问题,提出基于稀疏高斯过程回归的强/台风作用下大跨度桥梁风振响应概率预测方法。该方法从数据驱动的角度出发,采用稀疏近似方法降低常规高斯过程模型存储空间,将风特性参数与风振响应的历史监测数据同时作为输入变量,并根据联合假设检验比较各变量的重要性程度以确定最终输入特征,进而实现风振响应的动态预测。采用苏通大桥2008年至2012年的七次台风数据对该方法的预测精度与效率进行验证。结果表明:稀疏高斯过程回归相对于常规高斯过程可有效减少模型训练时间;除风特性参数外,在模型的输入变量中考虑风振响应历史数据可进一步提高预测精度;相较于随机森林算法和多元线性回归,稀疏高斯过程回归表现出更好的预测性能。 展开更多
关键词 风振响应 概率预测 强/台风 大跨度桥梁 稀疏高斯过程回归
在线阅读 下载PDF
基于中心对齐多核学习的稀疏多元逻辑回归算法 被引量:5
8
作者 雷大江 唐建烊 +1 位作者 李智星 吴渝 《电子与信息学报》 EI CSCD 北大核心 2020年第11期2735-2741,共7页
稀疏多元逻辑回归(SMLR)作为一种广义的线性模型被广泛地应用于各种多分类任务场景中。SMLR通过将拉普拉斯先验引入多元逻辑回归(MLR)中使其解具有稀疏性,这使得该分类器可以在进行分类的过程中嵌入特征选择。为了使分类器能够解决非线... 稀疏多元逻辑回归(SMLR)作为一种广义的线性模型被广泛地应用于各种多分类任务场景中。SMLR通过将拉普拉斯先验引入多元逻辑回归(MLR)中使其解具有稀疏性,这使得该分类器可以在进行分类的过程中嵌入特征选择。为了使分类器能够解决非线性数据分类的问题,该文通过核技巧对SMLR进行核化扩充后得到了核稀疏多元逻辑回归(KSMLR)。KSMLR能够将非线性特征数据通过核函数映射到高维甚至无穷维的特征空间中,使其特征能够充分地表达并最终能进行有效的分类。此外,该文还利用了基于中心对齐的多核学习算法,通过不同的核函数对数据进行不同维度的映射,并用中心对齐相似度来灵活地选取多核学习权重系数,使得分类器具有更好的泛化能力。实验结果表明,该文提出的基于中心对齐多核学习的稀疏多元逻辑回归算法在分类的准确率指标上都优于目前常规的分类算法。 展开更多
关键词 稀疏优化 核技巧 多核学习 稀疏多元逻辑回归
在线阅读 下载PDF
基于近红外光谱和稀疏偏最小二乘回归的生物质工业分析 被引量:4
9
作者 姚燕 王常玥 +3 位作者 刘辉军 汤建斌 蔡晋辉 汪静军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2015年第7期1864-1869,共6页
林木生物质能源作为一种新型可再生能源,具有非常广阔的发展前景。基于近红外光谱技术,首次引入稀疏偏最小二乘回归建立木屑生物质的工业分析模型,用于生物质燃料特性的快速分析测定。工业分析总共测定了80种木屑的水分、灰分、挥发分... 林木生物质能源作为一种新型可再生能源,具有非常广阔的发展前景。基于近红外光谱技术,首次引入稀疏偏最小二乘回归建立木屑生物质的工业分析模型,用于生物质燃料特性的快速分析测定。工业分析总共测定了80种木屑的水分、灰分、挥发分和固定碳含量百分比;按照样品种类和产地将其划分为训练集和测试集,利用近红外光谱仪采集光谱数据并进行小波滤波处理;再利用稀疏偏最小二乘回归建立木屑生物质的定量分析模型,并与主成分回归、偏最小二乘回归、最小绝对收敛及变量筛选方法的建模效果进行比较。结果证明,相对于以上三种建模方法,稀疏偏最小二乘回归能够挑选出有重要影响的波长群组,降低非目标波段的噪声干扰,从而增强数学模型的解释能力并提高定量分析的准确度。利用稀疏偏最小二乘回归算法挑选的波长区间基本覆盖了工业分析中水分的吸收峰,而对于灰分、挥发分和固定碳的吸收峰波段尚无准确定位,需要继续探讨。总体而言,稀疏偏最小二乘回归能够减少无关信息的干扰,提高模型定量分析的准确度,增强模型的解释能力,将会在近红外光谱技术应用领域内起到重要作用。 展开更多
关键词 近红外光谱 稀疏偏最小二乘回归 工业分析
在线阅读 下载PDF
稀疏贝叶斯回归及其在谐波电流异常检测中的应用 被引量:13
10
作者 邱思语 杨洪耕 《电力系统及其自动化学报》 CSCD 北大核心 2017年第5期104-107,共4页
提出了一种基于稀疏贝叶斯回归的用于检测谐波电流异常值的方法。该方法在稀疏贝叶斯框架下,利用谐波电流数据建立回归模型,以预测值与实测值间的残差作为异常检测的判据。假设噪声模型服从高斯分布,有效抑制了异常数据对回归曲线拟合... 提出了一种基于稀疏贝叶斯回归的用于检测谐波电流异常值的方法。该方法在稀疏贝叶斯框架下,利用谐波电流数据建立回归模型,以预测值与实测值间的残差作为异常检测的判据。假设噪声模型服从高斯分布,有效抑制了异常数据对回归曲线拟合的影响,从整体上保证了回归的平滑性。对实际工程数据进行分析计算,并对比其他方法,证明所提方法的有效性和准确性。 展开更多
关键词 电能质量 稀疏贝叶斯回归 谐波电流 异常检测 残差
在线阅读 下载PDF
基于Bagging混合策略的多风电场稀疏向量自回归概率预测 被引量:7
11
作者 徐扬 张耀 +2 位作者 陈宇轩 王建学 黎淦保 《电力系统保护与控制》 EI CSCD 北大核心 2023年第7期95-106,共12页
风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成... 风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。 展开更多
关键词 BAGGING 稀疏向量自回归 超短期风电预测 核密度估计 概率预测
在线阅读 下载PDF
联合核稀疏多元逻辑回归和TV-L1错误剔除的高光谱图像分类算法 被引量:9
12
作者 徐金环 沈煜 +1 位作者 刘鹏飞 肖亮 《电子学报》 EI CAS CSCD 北大核心 2018年第1期175-184,共10页
稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点... 稀疏多元逻辑回归(SMLR)是高光谱监督分类中的重要方法,然而仅仅利用光谱信息的SMLR忽略了影像本身的空间特征,在少量监督样本下的分类精度和算法的鲁棒性仍明显不足;虽然通过引入核技巧,核稀疏多元逻辑回归(KSMLR)可以部分克服上述缺点,其分类错误仍然有待进一步降低.本文基于核稀疏多元逻辑回归分类误差的统计建模分析,提出一种联合核稀疏多元逻辑回归和正则化错误剔除的高光谱图像分类模型.提出的模型通过引入隐概率场,采取L1范数度量KSMLR分类误差的重尾特性建立数据保真项;利用全变差(Total Variation,TV)正则化度量隐概率场的局部空间光滑性.由Indian Pines和University of Pavia数据集等实测数据应用表明,该方法可以得到更鲁棒和更高的分类精度. 展开更多
关键词 高光谱 图像分类 稀疏多元逻辑回归 错误剔除
在线阅读 下载PDF
基于稀疏矢量自回归概率模型的超短期风电功率预测算法 被引量:1
13
作者 窦丽霞 周其龙 《计算机应用与软件》 北大核心 2021年第11期276-281,共6页
可再生能源的概率预测被广泛认为是电力系统优化的必要条件。提出一种在大量地点进行超短期的参数化风电概率预测的时空方法,其基于logit-normal的参数框架,将多个风电场的位置参数建模为一个向量值时空过程,并采用改进的指数平滑法跟... 可再生能源的概率预测被广泛认为是电力系统优化的必要条件。提出一种在大量地点进行超短期的参数化风电概率预测的时空方法,其基于logit-normal的参数框架,将多个风电场的位置参数建模为一个向量值时空过程,并采用改进的指数平滑法跟踪尺度参数,采用一种先进的稀疏向量自回归模型拟合技术,对定位参数进行建模,并与传统的向量自回归模型相对比。以澳大利亚22个风电场的每5分钟平均风力发电数据集为例进行了测试,验证了该算法的有效性。 展开更多
关键词 稀疏矢量自回归概率模型 概率预测 风力发电 logit-normal函数
在线阅读 下载PDF
求解稀疏逻辑回归问题的嵌套BB算法的分裂增广拉格朗日算法 被引量:1
14
作者 梁仁莉 白延琴 《运筹学学报》 北大核心 2019年第2期86-94,共9页
逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂... 逻辑回归是经典的分类方法,广泛应用于数据挖掘、机器学习和计算机视觉.现研究带有程。模约束的逻辑回归问题.这类问题广泛用于分类问题中的特征提取,且一般是NP-难的.为了求解这类问题,提出了嵌套BB(Barzilai and Borwein)算法的分裂增广拉格朗日算法(SALM-BB).该算法在迭代中交替地求解一个无约束凸优化问题和一个带程。模约束的二次优化问题.然后借助BB算法求解无约束凸优化问题.通过简单的等价变形直接得到带程。模约束二次优化问题的精确解,并且给出了算法的收敛性定理.最后通过数值实验来测试SALM-BB算法对稀疏逻辑回归问题的计算精确性.数据来源包括真实的UCI数据和模拟数据.数值实验表明,相对于一阶算法SLEP,SALM-BB能够得到更低的平均逻辑损失和错分率. 展开更多
关键词 稀疏逻辑回归 分裂增广拉格朗日算法 特征提取
在线阅读 下载PDF
一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法 被引量:1
15
作者 何艳萍 陈天伟 +1 位作者 郑旭东 沈宇臻 《桂林理工大学学报》 CAS 北大核心 2020年第1期143-149,共7页
由于高光谱图像存在大量噪声,超限稀疏多项逻辑回归无法分析高光谱图像的内在结构,其适用性有待进一步提高,为解决超限稀疏多项逻辑回归不能有效应对噪声的问题,提出了一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方... 由于高光谱图像存在大量噪声,超限稀疏多项逻辑回归无法分析高光谱图像的内在结构,其适用性有待进一步提高,为解决超限稀疏多项逻辑回归不能有效应对噪声的问题,提出了一种基于超限稀疏多项逻辑回归和奇异谱分析的高光谱遥感影像分类方法:首先对高光谱遥感影像数据集进行归一化处理以消除数据量纲的影响,随后利用奇异谱分析对影像进行有效信息提取及噪声剔除,最后通过超限稀疏多项式逻辑回归对处理过的数据实现分类。采用多种不同数量的训练样本进行实验,并与3种常用分类算法进行对比分析,评价了本文方法的有效性和鲁棒性。结果显示,本文方法在各类训练样本情况下相比于其他分类方法,其总体分类精度皆有一定程度的提升。 展开更多
关键词 高光谱图像分类 超限稀疏多项逻辑回归 极限学习机 奇异谱分析
在线阅读 下载PDF
顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法
16
作者 沈宇臻 官云兰 +2 位作者 杨禄 刘承承 严小芳 《测绘通报》 CSCD 北大核心 2019年第6期24-28,共5页
稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想.本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法.首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取... 稀疏多项式逻辑回归在分类中仅利用图像光谱信息,导致分类效果不太理想.本文提出了一种顾及局部与结构特征的稀疏多项式逻辑回归高光谱图像分类方法.首先利用加权均值滤波与拓展形态学多属性剖面对原始高光谱图像进行局部与结构特征提取;然后对二者进行加权平均特征级融合以获取更具唯一性的像元特征;最后由稀疏多项式逻辑回归分类器对融合结果进行分类.结果表明,本文方法能有效地提高分类精度,而且具有较强的稳健性. 展开更多
关键词 高光谱影像 特征融合 加权均值滤波 EMAPs 稀疏多项式逻辑回归
在线阅读 下载PDF
协同稀疏低秩的高光谱图像解混 被引量:1
17
作者 韩红伟 冯向东 郭科 《现代电子技术》 2022年第5期67-73,共7页
稀疏解混能够有效地规避高光谱场景中缺少纯像元和估计端元数目的两个瓶颈问题,因而成为目前广泛研究的光谱解混技术。针对协同稀疏解混模型在边界上容易出现错误识别的问题,结合字典削减策略和低秩表示,提出一种协同稀疏低秩的解混模... 稀疏解混能够有效地规避高光谱场景中缺少纯像元和估计端元数目的两个瓶颈问题,因而成为目前广泛研究的光谱解混技术。针对协同稀疏解混模型在边界上容易出现错误识别的问题,结合字典削减策略和低秩表示,提出一种协同稀疏低秩的解混模型。该方法同时施加稀疏和低秩约束在丰度矩阵上,并对协同稀疏模型的?2,1混合范数采用加权策略,使得行稀疏性得到了增强,同时也使用非凸logdet(·)作为秩的光滑替代函数。由于提出方法充分利用了高光谱数据的空间信息和光谱信息,因此获得了比协同稀疏回归模型更准确的解混结果。最后利用著名的交替方向乘子方法(ADMM)对提出的非凸模型进行有效求解,实验结果验证了提出算法的有效性。 展开更多
关键词 协同稀疏回归 稀疏表示 高光谱解混 低秩表示 高光谱图像 解混模型 实验分析
在线阅读 下载PDF
基于空间加权协同稀疏的高光谱解混算法研究 被引量:4
18
作者 朱昌宇 张绍泉 +1 位作者 李军 李恒超 《南京信息工程大学学报(自然科学版)》 CAS 2018年第1期92-101,共10页
针对传统稀疏解混算法因空间信息利用不足带来的丰度图像空间分布连续性差的问题,本文提出了一种基于空间加权协同稀疏的解混方法.该方法利用协同稀疏正则项刻画丰度系数的行稀疏性;同时,在协同稀疏框架下,引入空间加权因子挖掘高光谱... 针对传统稀疏解混算法因空间信息利用不足带来的丰度图像空间分布连续性差的问题,本文提出了一种基于空间加权协同稀疏的解混方法.该方法利用协同稀疏正则项刻画丰度系数的行稀疏性;同时,在协同稀疏框架下,引入空间加权因子挖掘高光谱图像邻域像元间的空间相关性.本模型采用交替方向乘子法求解,通过交替迭代,对空间权重和丰度系数进行优化.模拟和真实高光谱数据实验结果表明本文方法能够比现有同类方法获得更精确的解混结果. 展开更多
关键词 高光谱图像 稀疏解混 空间加权 协同稀疏回归
在线阅读 下载PDF
基于稀疏聚类的无监督特征选择 被引量:2
19
作者 董利梅 赵红 杨文元 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期107-115,共9页
特征选择是从特征集合中选择相关特征子集,方便数据聚类、分类和检索等.现有的无监督特征选择算法是将高维数据映射到低维空间并计算每个特征的得分,选择排名靠前的特征.提出一种基于稀疏聚类的无监督特征选择算法:首先利用流形学习的... 特征选择是从特征集合中选择相关特征子集,方便数据聚类、分类和检索等.现有的无监督特征选择算法是将高维数据映射到低维空间并计算每个特征的得分,选择排名靠前的特征.提出一种基于稀疏聚类的无监督特征选择算法:首先利用流形学习的特征映射思想将高维空间的数据映射到低维空间中,用样本构造近邻图,通过图的嵌入找到低维空间,降维后的空间能保持原始数据集的流形结构.其次,得到的样本嵌入矩阵表示特征的重要性,是区分特征对每一个聚类簇的贡献大小的指标,利用低维空间对高维空间的拟合,构造一个目标函数.最后,目标函数本质是回归问题,求解回归优化问题常用最小角回归算法,使用L_1范数进行稀疏回归计算每个特征的得分,选出得分靠前的特征.在六个现实数据集上的实验结果表明:该算法在聚类精度和互信息上取得了较好的实验结果,能有效地选出重要特征,在降维方面具有良好性能,优于其他对比算法. 展开更多
关键词 无监督特征选择 流形学习 特征映射 稀疏回归
在线阅读 下载PDF
基于稀疏组lasso的脑机接口通道和特征选择研究 被引量:8
20
作者 王金甲 薛芳 李慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第8期1831-1837,共7页
脑电信号(EEG)特征提取和分类是脑机接口(BCI)系统的核心问题之一。由于BCI系统中EEG信号多通道采样和特征向量的高维性,有效的特征选择算法已经成为研究中不可分割的一部分。针对EEG特征选择问题采用一种新方法:基于封装式稀疏组lasso... 脑电信号(EEG)特征提取和分类是脑机接口(BCI)系统的核心问题之一。由于BCI系统中EEG信号多通道采样和特征向量的高维性,有效的特征选择算法已经成为研究中不可分割的一部分。针对EEG特征选择问题采用一种新方法:基于封装式稀疏组lasso的EEG融合特征的同时通道和特征选择方法。实验中将该方法与现有的通道选择和特征选择方法进行比较,结果表明,该方法更适用于高维融合特征的最优特征子集选择问题,且该算法稳定、时间成本低。此外,在保证错误率相当或较低的情况下,该方法能够同时实现通道和特征选择。国际BCI竞赛IV的两类运动想象信号的测试错误率为15.28%。 展开更多
关键词 脑机接口 特征融合 通道选择 特征选择 基于稀疏组lasso的logistic回归 块坐标下降
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部