风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成...风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。展开更多
稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可...稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可避免每次执行SpMV均从主存加载A,从而缓解SpMV访存受限问题,提升MPK性能.但缓存数据重用会导致相邻SpMV操作之间的数据依赖,现有MPK优化多针对单次SpMV调用,或在实现数据重用时引入过多额外开销.提出了缓存感知的MPK(cache-awareMPK,Ca-MPK),基于稀疏矩阵的依赖图,设计了体系结构感知的递归划分方法,将依赖图划分为适合缓存大小的子图/子矩阵,通过构建分割子图解耦数据依赖,根据特定顺序在子矩阵上调度执行SpMV,实现缓存数据重用.测试结果表明,Ca-MPK相对于Intel OneMKL库和最新MPK实现,平均性能提升分别多达约1.57倍和1.40倍.展开更多
在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)...在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)。首先,设计一种全新的动态划分策略,根据矩阵的不同特征进行分块,在保证GPU高计算效率的同时大幅减少零元填充,去除冗余计算量;其次,提出一种对角稀疏矩阵存储格式BDIA(Block DIAgonal)存储分块数据,并调整数据布局,提高GPU上的访存性能;最后,基于GPU的底层进行条件分支优化,以减少分支判断,并使用动态共享内存解决向量的不规则访问问题。DIA-Dynamic与前沿Tile SpMV算法相比,平均加速比达到了1.88;与前沿BRCSD(Diagonal Compressed Storage based on Row-Blocks)-Ⅱ算法相比,平均零元填充减少了43%,平均加速比达到了1.70。实验结果表明,DIA-Dynamic能够有效提高GPU上对角SpMV的计算效率,缩短计算时间,提升程序性能。展开更多
矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图...矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图形处理单元求解得到了广泛关注。分别从应用特征和GPU体系结构特征两方面分析了PEC运算的性能瓶颈,提出了一种面向GPU的稀疏矩阵存储格式——GPU-ELL和一个针对GPU的线程优化映射策略,并设计了相应的PEC优化执行算法。在ATI HD Radeon5850上的实验结果表明,相对于传统CPU,该方案获得了最多200倍左右的加速,相对于已有GPU上的实现,也获得了2倍的加速。展开更多
文摘风电功率预测对电力系统的安全稳定运行具有重要意义。针对多风电场的超短期概率预测问题,提出了一种基于Bagging混合策略和核密度估计(kernel density estimation,KDE)的稀疏向量自回归预测方法。首先通过时间序列分解和余项自举,生成若干自举时间序列。对于每个时间序列,采用向量自回归(vector autoregression,VAR)模型进行预测。针对传统模型在风场数量较多时容易出现的过拟合问题,采用稀疏向量自回归模型,筛选最有效的回归系数,得到稀疏系数矩阵。每个时间序列训练的预测模型分别产生点预测结果,对于多重点预测结果,使用KDE方法产生概率密度的预测结果。在真实风电集群数据上,验证所提多场站概率预测方法的有效性,采用分位数得分评估概率预测精度。相关实验结果表明,该方法可以有效提高概率预测精度。
文摘稀疏线性方程组求解等高性能计算应用常常涉及稀疏矩阵向量乘(SpMV)序列Ax,A2x,…,Asx的计算.上述SpMV序列操作又称为稀疏矩阵幂函数(matrix power kernel,MPK).由于MPK执行多次SpMV且稀疏矩阵保持不变,在缓存(cache)中重用稀疏矩阵,可避免每次执行SpMV均从主存加载A,从而缓解SpMV访存受限问题,提升MPK性能.但缓存数据重用会导致相邻SpMV操作之间的数据依赖,现有MPK优化多针对单次SpMV调用,或在实现数据重用时引入过多额外开销.提出了缓存感知的MPK(cache-awareMPK,Ca-MPK),基于稀疏矩阵的依赖图,设计了体系结构感知的递归划分方法,将依赖图划分为适合缓存大小的子图/子矩阵,通过构建分割子图解耦数据依赖,根据特定顺序在子矩阵上调度执行SpMV,实现缓存数据重用.测试结果表明,Ca-MPK相对于Intel OneMKL库和最新MPK实现,平均性能提升分别多达约1.57倍和1.40倍.
文摘稀疏矩阵向量乘法(sparse matrix-vector multiplication,SpMV)是数值计算中的核心操作,广泛应用于科学计算、工程模拟以及机器学习中.SpMV的性能优化主要受限于不规则的稀疏模式,传统的优化通常依赖手动设计存储格式、计算策略和内存访问模式.现有张量编译器如TACO和TVM通过领域特定语言(domain specific language,DSL)可实现高性能算子生成,减轻开发人员繁琐的手动优化工作,但对稀疏计算的优化支持尚显不足,难以根据不同的稀疏模式自适应优化性能.为了解决这些问题,提出了名为SparseMode的稀疏编译框架,能够依据矩阵的稀疏模式为SpMV计算生成高效的向量化代码,并根据硬件平台的特性自适应地调整优化策略.该编译框架首先设计了领域专属语言SpMV-DSL,能够简洁高效地表达SpMV的稀疏矩阵和计算操作.然后提出了基于稀疏模式感知的方法,根据SpMV-DSL定义的矩阵存储格式和非零元素分布动态选择计算策略.最后通过稀疏模式分析和调度优化生成高效并行的SpMV算子代码,以充分利用SIMD指令提升性能.在不同硬件平台上的SpMV实验结果表明,SparseMode生成的SpMV算子代码相较于现有的TACO和TVM张量编译器实现了最高2.44倍的加速比.
文摘在图形处理器(GPU)上实现对角稀疏矩阵向量乘法(SpMV)可以充分利用GPU的并行计算能力,并加速矩阵向量乘法;然而,相关主流算法存在零元填充数据多、计算效率低的问题。针对上述问题,提出一种对角SpMV算法DIA-Dynamic(DIAgonal-Dynamic)。首先,设计一种全新的动态划分策略,根据矩阵的不同特征进行分块,在保证GPU高计算效率的同时大幅减少零元填充,去除冗余计算量;其次,提出一种对角稀疏矩阵存储格式BDIA(Block DIAgonal)存储分块数据,并调整数据布局,提高GPU上的访存性能;最后,基于GPU的底层进行条件分支优化,以减少分支判断,并使用动态共享内存解决向量的不规则访问问题。DIA-Dynamic与前沿Tile SpMV算法相比,平均加速比达到了1.88;与前沿BRCSD(Diagonal Compressed Storage based on Row-Blocks)-Ⅱ算法相比,平均零元填充减少了43%,平均加速比达到了1.70。实验结果表明,DIA-Dynamic能够有效提高GPU上对角SpMV的计算效率,缩短计算时间,提升程序性能。
文摘矩阵主特征向量(principal eigenvectors computing,PEC)的求解是科学与工程计算中的一个重要问题。随着图形处理单元通用计算(general-purpose computing on graphics pro cessing unit,GPGPU)的兴起,利用GPU来优化大规模稀疏矩阵的图形处理单元求解得到了广泛关注。分别从应用特征和GPU体系结构特征两方面分析了PEC运算的性能瓶颈,提出了一种面向GPU的稀疏矩阵存储格式——GPU-ELL和一个针对GPU的线程优化映射策略,并设计了相应的PEC优化执行算法。在ATI HD Radeon5850上的实验结果表明,相对于传统CPU,该方案获得了最多200倍左右的加速,相对于已有GPU上的实现,也获得了2倍的加速。