期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
地震波形反演的稀疏约束正则化方法 被引量:16
1
作者 王薇 韩波 唐锦萍 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2013年第1期289-297,共9页
本文考虑地震波形反演问题.为了克服传统的Tikhonov正则化方法过度光滑的弊端,引入了非线性稀疏约束正则化方法,并采用对偶方法求解稀疏约束泛函的极小点.基于二维声波方程波形反演问题进行了数值模拟,针对不同模型对稀疏约束正则化方... 本文考虑地震波形反演问题.为了克服传统的Tikhonov正则化方法过度光滑的弊端,引入了非线性稀疏约束正则化方法,并采用对偶方法求解稀疏约束泛函的极小点.基于二维声波方程波形反演问题进行了数值模拟,针对不同模型对稀疏约束正则化方法进行了测试.结果表明,稀疏约束正则化方法对不连续介质模型的介质边缘具有良好的识别能力. 展开更多
关键词 波形反演 稀疏约束正则方法 对偶方法 不连续介质
在线阅读 下载PDF
基于动态指导的深度学习模型稀疏化执行方法 被引量:3
2
作者 孙茹君 张鲁飞 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第3期11-19,共9页
以深度学习为代表的人工智能技术迅速发展,庞大的数据、模型,更大的计算量和更复杂的计算都对模型的执行提出了挑战.在实际应用中,资源和应用的动态特征以及用户的动态需求,需要模型执行的动态性来保证.而稀疏化是在资源受限、用户需求... 以深度学习为代表的人工智能技术迅速发展,庞大的数据、模型,更大的计算量和更复杂的计算都对模型的执行提出了挑战.在实际应用中,资源和应用的动态特征以及用户的动态需求,需要模型执行的动态性来保证.而稀疏化是在资源受限、用户需求调整情况下动态模型的执行重要手段.目前主流的稀疏化技术主要是针对特定问题的稀疏化,且针对推理的多,针对训练的少,缺乏在训练执行阶段进行动态调整和稀疏化的手段.本文在对深度学习领域的基本计算单元进行可稀疏性分析的基础上,进一步分析了模型执行的不同层面、不同组成部分的稀疏化能力;经过对动态需求、模型稀疏化策略的建模后,提出了基于动态指导的深度学习模型稀疏化执行方法,并进行了基本实验;最后从量化建模与量化实验的角度对今后的研究工作提出了展望. 展开更多
关键词 深度学习 稀疏化方法 资源受限 动态调度
在线阅读 下载PDF
位场数据重构的l_p范数稀疏约束正则化方法 被引量:1
3
作者 陈国新 陈生昌 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第4期748-756,共9页
基于位场数据在离散余弦变换域的稀疏性,利用lp(0≤p<1)范数代替l1范数作为模型参数稀疏性的度量.引入lp范数稀疏约束正则化方法,借用迭代再加权最小二乘算法思想求解得到稀疏约束优化问题的解.分析不同p值的lp范数稀疏约束正则化方... 基于位场数据在离散余弦变换域的稀疏性,利用lp(0≤p<1)范数代替l1范数作为模型参数稀疏性的度量.引入lp范数稀疏约束正则化方法,借用迭代再加权最小二乘算法思想求解得到稀疏约束优化问题的解.分析不同p值的lp范数稀疏约束正则化方法的数据重构能力.将该算法应用于实际位场数据重构试验中获得了较理想的结果,通过边界外延加大计算区域的方法减少了边界数据的重构误差,提高了数据重构质量. 展开更多
关键词 位场数据重构 LP范数 稀疏约束正则方法 迭代再加权最小二乘算法
在线阅读 下载PDF
基于综合几何关系稀疏自注意力机制的图像标注方法研究 被引量:6
4
作者 李艳 金小峰 《计算机应用研究》 CSCD 北大核心 2022年第4期1132-1136,共5页
针对基于Transformer框架的图像标注任务中提取视觉特征容易引入噪声问题且为了进一步提高视觉的上下文信息,提出了一种基于综合几何关系稀疏自注意力机制的图像标注方法。首先通过结合图像区域的绝对位置、相对位置和空间包含关系提取... 针对基于Transformer框架的图像标注任务中提取视觉特征容易引入噪声问题且为了进一步提高视觉的上下文信息,提出了一种基于综合几何关系稀疏自注意力机制的图像标注方法。首先通过结合图像区域的绝对位置、相对位置和空间包含关系提取详细全面的视觉表示,获取图像中潜在的上下文信息;其次提出了注意力层权重矩阵的稀疏化方法,该方法解决了Transformer忽略图像区域的局部性并引入噪声信息的问题;最后,采用了强化学习方法作为指导策略,实现模型在句子级别优化目标序列。通过在MS-COCO数据集上进行的对比实验结果表明,提出的方法在BLEU1、BLEU4、METEOR、ROUGE-L、CIDEr和SPICE指标上分别比基线模型提升了0.2、0.7、0.1、0.3、1.2和0.4,有效提升了图像自动标注的性能。 展开更多
关键词 图像标注 TRANSFORMER 自注意力机制 稀疏化方法
在线阅读 下载PDF
基于fused惩罚的稀疏主成分分析 被引量:3
5
作者 张波 刘晓倩 《统计研究》 CSSCI 北大核心 2019年第4期119-128,共10页
本文旨在研究基于fused惩罚的稀疏主成分分析方法,以适用于相邻变量之间高度相关甚至完全相等的数据情形。首先,从回归分析角度出发,提出一种求解稀疏主成分的简便思路,给出一种广义的稀疏主成分模型——GSPCA模型及其求解算法,并证明... 本文旨在研究基于fused惩罚的稀疏主成分分析方法,以适用于相邻变量之间高度相关甚至完全相等的数据情形。首先,从回归分析角度出发,提出一种求解稀疏主成分的简便思路,给出一种广义的稀疏主成分模型——GSPCA模型及其求解算法,并证明在惩罚函数取1-范数时,该模型与现有的稀疏主成分模型——SPC模型的求解结果一致。其次,提出将fused惩罚与主成分分析相结合,得到一种fused稀疏主成分分析方法,并从惩罚性矩阵分解和回归分析两个角度,给出两种模型形式。在理论上证明了两种模型的求解结果是一致的,故将其统称为FSPCA模型。模拟实验显示,FSPCA模型在处理相邻变量之间高度相关甚至完全相等的数据集上表现良好。最后,将FSPCA模型应用于手写数字识别,发现与SPC模型相比,FSPCA模型所提取的主成分具备更好的解释性。 展开更多
关键词 主成分分析 稀疏化方法 fused惩罚 手写数字识别 可解释性
在线阅读 下载PDF
Fast SqueezeNet算法及在地铁人群密度估计上的应用 被引量:4
6
作者 郭强 刘全利 王伟 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第7期1036-1046,共11页
针对地铁视频监控一直缺乏一种有效的人群密度分类器的问题,提出了基于人群密度估计算法—Fast SqueezeNet的人群密度分类器,用于在地铁嵌入式计算平台有限的硬件资源限制下,实现对地铁车厢内人群的密度估计.该算法基于轻型卷积神经网络... 针对地铁视频监控一直缺乏一种有效的人群密度分类器的问题,提出了基于人群密度估计算法—Fast SqueezeNet的人群密度分类器,用于在地铁嵌入式计算平台有限的硬件资源限制下,实现对地铁车厢内人群的密度估计.该算法基于轻型卷积神经网络SqueezeNet,结合权值稀疏化和结构稀疏化方法,具有如下3点优势: 1)以原始图像作为输入,并在处理的过程中自动提取纹理特征用于拥挤人群密度的估计;2) SqueezeNet经过权值稀疏化后,具有更少的模型参数,可以灵活的布置在安谋(ARM)等具有有限硬件资源的嵌入式平台上;3)结构稀疏化方法使得SqueezeNet具有更快的前向预测速度,提高其在地铁嵌入式平台上的图像处理效率.在3个人群密度数据集PETS 2009, Mall和ShangHai metro上,采用Fast SqueezeNet算法的三分类人群密度分类器,与基于卷积神经网络和单纯的权值稀疏化SqueezeNet网络的分类器进行对比实验研究,结果表明:在预测准确率、参数规模和运行时间3个维度上,基于Fast SqueezeNet的分类器均表现出了较好的性能,有效地克服了地铁车厢拥挤人群中存在的高密度、高耦合、透视变形等图像识别难题对估计结果的影响.最后,在ARM嵌入式平台上的实验表明基于FastSqueezeNet的分类器可以在有限的硬件资源下,快速准确的得到预测结果,满足高速运行的地铁列车日常使用需求. 展开更多
关键词 人群密度估计 SqueezeNet 稀疏化方法 地铁 嵌入式平台
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部