期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
基于张量字典学习的高光谱图像稀疏表示分类 被引量:1
1
作者 宫学亮 李玉 +2 位作者 贾淑涵 赵泉华 王丽英 《光谱学与光谱分析》 北大核心 2025年第3期798-807,共10页
高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(... 高光谱图像因其蕴含十分丰富的光谱和空间信息已被广泛应用于生产生活的各个领域。为了充分挖掘高光谱图像中蕴含的光谱和空间信息,从高光谱数据固有的三维属性出发,以空-谱张量为基本处理单元,提出一种基于张量字典学习的稀疏表示分类(Tensor-DLSRC)算法,以提高高光谱图像分类精度。首先,构建以像素及其空间邻域像素光谱向量组成的像素空-谱张量;其次,将作为训练样本像素的空-谱张量按照不同维度展开成矩阵,并以其列向量均值作为字典原子组成初始化张量字典;同时,在张量稀疏性约束条件下构建张量稀疏表示(Tensor-SR)模型,并利用张量字典学习算法学习一组能够精确刻画该类张量空-谱特征的字靛矩阵;最后,对待分类像素利用Tensor-SR模型求解其空-谱张量的稀疏表示系数张量,根据重构残差最小化原则确定该像素类别。为了分析参数对提出算法分类精度的影响,在进行分类对比实验之前,通过一系列实验分别讨论训练样本数M、邻域窗口尺寸(2δ+1)×(2δ+1)、字典学习阶段的稀疏度μ1和稀疏表示阶段的稀疏度μ2等参数对总体分类精度(OA)的影响。为了验证提出算法的有效性,分别在Indian Pines、Salinas和Xuzhou三个高光谱数据上进行实验,对比分析本算法与基于光谱向量的SRC算法和DLSRC算法、增加邻域空间信息的JSRC算法和DLJSRC算法和基于空-谱张量的Tensor-DLSRC算法等五种算法的分类结果,并采用基于混淆矩阵的平均准确率(APR)、平均精度(PA)、OA和Kappa系数对分类结果定量分析。所提出的Tensor-DLSRC算法在OA和Kappa系数的平均值水平是六种算法中最高的,且具有最小的标准差,说明本算法与五种其他算法相比能够提供更准确且稳定的分类结果。 展开更多
关键词 高光谱图像 空-谱张量 稀疏表示 张量字典学习 张量稀疏表示分类
在线阅读 下载PDF
随机降维映射稀疏表示的电能质量扰动多分类研究 被引量:18
2
作者 沈跃 刘国海 刘慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第6期1371-1376,共6页
提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解... 提出一种随机降维映射特征提取与稀疏表示分类相结合的电能质量扰动信号识别方法。首先将扰动信号测试样本表示为训练样本集的过完备字典稀疏线性组合,然后使用随机测量矩阵获取测试样本降维特征量和稀疏表示感知矩阵,应用最小L1范数解决方案求取扰动信号测试样本的稀疏解,由冗余误差最小值确定目标归属类,实现对电能质量扰动的稀疏表示多分类识别。研究表明随机矩阵降维映射特征提取不依赖于电能扰动样本特性,构造简单,运算快速,具有普适性;稀疏表示分类法与支持向量机相比无需组合多个二分类器来实现多分类器。仿真和实验结果表明该方法能有效提取各种电能扰动特征,抗噪声鲁棒性好,在信噪比20 dB以上的噪声环境中电能质量扰动分类准确率达95%以上。 展开更多
关键词 电能质量 扰动分类 压缩感知 随机矩阵 降维映射 稀疏表示分类 最小L1范数
在线阅读 下载PDF
改进的局部稀疏表示分类算法及其在人脸识别中的应用 被引量:6
3
作者 尹贺峰 吴小俊 陈素根 《计算机科学》 CSCD 北大核心 2015年第8期48-51,85,共5页
近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出... 近年来,稀疏表示分类(Sparse Representation Based Classification,SRC)方法在人脸识别中受到越来越多的关注。原始SRC方法使用所有的训练样本组成字典矩阵,当训练样本比较多时,稀疏系数的求解会变得非常耗时。为了解决这一问题,提出一种新的局部稀疏表示分类(Local SRC,LSRC)方法。该方法针对每个测试样本,根据测试样本和训练样本稀疏系数之间的相似性来选择部分训练样本,由这些训练样本组成字典,然后在这个字典上对测试样本进行稀疏分解。该方法性能相比于原始LSRC方法更稳定。在ORL、Yale和AR人脸库上的实验结果表明,该方法的效果优于SRC和LSRC。 展开更多
关键词 稀疏表示分类 局部稀疏表示分类 稀疏系数 相似性 人脸识别
在线阅读 下载PDF
稀疏表示分类中遮挡字典构造方法的改进 被引量:6
4
作者 朱明旱 李树涛 叶华 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第11期2064-2069,2078,共7页
针对稀疏表示分类算法中遮挡字典维数高且无冗余的问题,提出一种遮挡字典构造方法.首先通过图像分块得到各级的遮挡基图像;然后将所有互不相同的遮挡基图像按字典顺序转化为向量,并用这些向量作为遮挡字典的列,从而构造出维数相对较低... 针对稀疏表示分类算法中遮挡字典维数高且无冗余的问题,提出一种遮挡字典构造方法.首先通过图像分块得到各级的遮挡基图像;然后将所有互不相同的遮挡基图像按字典顺序转化为向量,并用这些向量作为遮挡字典的列,从而构造出维数相对较低且具有一定冗余度的遮挡字典.实验结果表明,该方法不仅明显提高了稀疏表示分类算法对遮挡人脸的识别率,而且还能通过减少图像的分块级数降低稀疏分解的耗时量,提高运算效率. 展开更多
关键词 稀疏表示分类 遮挡字典 人脸识别
在线阅读 下载PDF
傅里叶中红外光谱结合稀疏表示分类方法鉴别小麦赤霉病感染等级 被引量:4
5
作者 梁琨 张夏夏 +3 位作者 丁静 徐剑宏 韩东燊 沈明霞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第10期3251-3255,共5页
旨在探索感染不同等级赤霉病的小麦中主要成分含量变化引起的傅里叶中红外光谱信息响应,并结合模式识别方法实现基于傅里叶变换中红外光谱的小麦赤霉病等级无损检测。以感染不同等级赤霉病小麦为研究对象,在4000~400cm^-1波数范围内采... 旨在探索感染不同等级赤霉病的小麦中主要成分含量变化引起的傅里叶中红外光谱信息响应,并结合模式识别方法实现基于傅里叶变换中红外光谱的小麦赤霉病等级无损检测。以感染不同等级赤霉病小麦为研究对象,在4000~400cm^-1波数范围内采集95个小麦样本的傅里叶中红外光谱数据,利用载荷系数法(XLW)与随机森林算法(RF)分析选取小麦样本傅里叶中红外光谱中的敏感波长,利用稀疏表示分类(SRC)算法建模识别小麦感染赤霉病等级。结果表明:XLW算法和RF算法选择的特征波长作为定性分析模型的输入时模型鉴别准确率与全波段光谱数据作输入时均达90%以上,特征波长提取算法可以有效简化模型并提高效率。RF-SRC模型鉴别效果最好,建模集鉴别准确率达97%,测试集鉴别准确率达96%。小麦感染赤霉病等级的不同会引起小麦中水分、淀粉、纤维素、可溶性氮素、蛋白质、脂肪等物质含量的变化,采用RF算法选择的特征波长均反映了这些物质所对应的傅里叶中红外光谱透射光谱特征的差异,结合SRC模型进行小麦赤霉病等级鉴别可达到最好的鉴别效果。因此,利用傅里叶中红外光谱技术结合模式识别方法对小麦赤霉病等级鉴别是可行的,解释了傅里叶中红外光谱技术检测小麦赤霉病等级的机理。 展开更多
关键词 傅里叶中红外光谱 小麦 赤霉病 稀疏表示分类
在线阅读 下载PDF
基于多重核的稀疏表示分类 被引量:5
6
作者 陈思宝 许立仙 罗斌 《电子学报》 EI CAS CSCD 北大核心 2014年第9期1807-1811,共5页
稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用.为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法.提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明.对于多重核的权重给出了... 稀疏表示分类(SRC)及核方法在模式识别的很多问题中都得到了成功的运用.为了提高其分类精度,提出多重核稀疏表示及其分类(MKSRC)方法.提出一种快速求解稀疏系数的优化迭代方法并给出了其收敛到全局最优解的证明.对于多重核的权重给出了两种自动更新方式并进行了分析与比较.在不同的人脸图像库上的分类实验显示了所提出的多重核稀疏表示分类的优越性. 展开更多
关键词 稀疏表示分类(SRC) 核方法 多重核 核权重 模式识别
在线阅读 下载PDF
基于稀疏表示的红外空中目标分类算法(英文) 被引量:1
7
作者 金璐 李范鸣 +1 位作者 刘士建 王霄 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2019年第5期578-586,共9页
针对红外空中目标,提出了一种基于稀疏表示的快速分类算法.该工作的技术难点表现在训练样本较少,算法需要具有旋转不变性、较高的抗噪性和实时性.针对这些难点,首先根据红外空中面目标的梯度信息和统计特性,计算出图像主方向,然后将主... 针对红外空中目标,提出了一种基于稀疏表示的快速分类算法.该工作的技术难点表现在训练样本较少,算法需要具有旋转不变性、较高的抗噪性和实时性.针对这些难点,首先根据红外空中面目标的梯度信息和统计特性,计算出图像主方向,然后将主方向旋转至同一参考方向.接着基于稀疏表示原理,把分类问题转化为1范数最小化问题,最后用快速收敛方法得到分类结果.实验结果表明该方法能够达到98.3%的正确率,给测试图像50%的像素叠加噪声后,分类正确率仍大于80%. 展开更多
关键词 红外图像 空中目标 旋转不变性 稀疏表示分类
在线阅读 下载PDF
基于总体局域均值分解及稀疏表示分类的天然气管道泄漏孔径识别 被引量:5
8
作者 孙洁娣 彭志涛 +1 位作者 温江涛 王飞 《中国机械工程》 EI CAS CSCD 北大核心 2017年第10期1202-1209,共8页
针对天然气管道泄漏受孔径、传感器距离、管道内压力等多种因素影响,特征提取及识别算法较为复杂的问题,提出了基于总体局域均值分解-相对熵的特征提取算法并结合稀疏表示分类的泄漏孔径识别新方法。该方法采用总体局域均值分解方法对... 针对天然气管道泄漏受孔径、传感器距离、管道内压力等多种因素影响,特征提取及识别算法较为复杂的问题,提出了基于总体局域均值分解-相对熵的特征提取算法并结合稀疏表示分类的泄漏孔径识别新方法。该方法采用总体局域均值分解方法对泄漏信号进行自适应分解,得到不同孔径泄漏信号的特征信息,并根据KL散度选择包含主要泄漏信息的PF分量,在此基础上提取多种时频特征参数,获取全面准确表征泄漏信号的特征向量;针对小样本复杂信号的分类,提出稀疏表示分类器实现泄漏孔径准确分类。该分类器采用过完备字典求得测试信号的最稀疏解,并以此解作为测试信号的稀疏重构系数,以获取测试信号在不同类别中的重构信号,最终通过判断测试信号与重构信号的残差值大小完成泄漏孔径分类。实验结果表明,所提出的算法比传统的SVM及BP分类算法识别准确率高。 展开更多
关键词 泄漏孔径识别 总体局域均值分解(ELMD) KL散度 稀疏表示分类 过完备字典
在线阅读 下载PDF
非共享多测量向量的稀疏表示分类模型 被引量:1
9
作者 蔡体健 樊晓平 +1 位作者 陈志杰 廖志芳 《计算机科学》 CSCD 北大核心 2018年第3期258-262,共5页
多测量向量的联合稀疏重构要求多个源信号共享相同的稀疏结构,但实际应用中较难得到具有完全相同的稀疏结构的测量信号。为了降低非共享稀疏结构对MMV模型联合稀疏重构的影响,文中提出了一种改进贪婪类联合稀疏重构算法的方法。该方法... 多测量向量的联合稀疏重构要求多个源信号共享相同的稀疏结构,但实际应用中较难得到具有完全相同的稀疏结构的测量信号。为了降低非共享稀疏结构对MMV模型联合稀疏重构的影响,文中提出了一种改进贪婪类联合稀疏重构算法的方法。该方法在每次迭代时并不要求各测量向量选择相同的表示原子,而是要求选择同一类的表示原子。改进后的算法可用于非共享多测量向量的稀疏表示分类。基于模拟数据和标准人脸库数据的实验结果表明,改进后的模型可有效提高稀疏表示的分类性能。 展开更多
关键词 压缩感知 多测量向量 共享稀疏结构 稀疏表示分类
在线阅读 下载PDF
基于自适应权重的多重稀疏表示分类算法 被引量:2
10
作者 段刚龙 魏龙 李妮 《计算机工程与应用》 CSCD 2014年第8期173-177,246,共6页
提出了一种基于多特征字典的稀疏表示算法。该算法针对SRC的单特征鉴别性较弱这一不足,对样本提出多个不同特征并分别进行相应的稀疏表示。并根据SRC算法计算各个特征的鉴别性,自适应地学习出稀疏权重并进行线性加权,从而提高分类的性... 提出了一种基于多特征字典的稀疏表示算法。该算法针对SRC的单特征鉴别性较弱这一不足,对样本提出多个不同特征并分别进行相应的稀疏表示。并根据SRC算法计算各个特征的鉴别性,自适应地学习出稀疏权重并进行线性加权,从而提高分类的性能。实验表明,基于自适应权重的多重稀疏表示分类算法,具有更好的分类效果。 展开更多
关键词 自适应权重 多重稀疏表示 稀疏表示分类器(SRC)
在线阅读 下载PDF
基于傅里叶描述子和加权稀疏表示的军事图像分类方法 被引量:1
11
作者 谢泽奇 张会敏 张善文 《计算机应用与软件》 北大核心 2019年第3期68-71,75,共5页
军事图像分类是一个重要的研究方向。在傅里叶描述子和加权稀疏表示的基础上,提出一种军事图像分类方法。利用Canny算法提取军事图像的轮廓特征,计算轮廓点的中心距离序列;再将该序列转换为极坐标转换,进行傅里叶变换,得到军事图像的改... 军事图像分类是一个重要的研究方向。在傅里叶描述子和加权稀疏表示的基础上,提出一种军事图像分类方法。利用Canny算法提取军事图像的轮廓特征,计算轮廓点的中心距离序列;再将该序列转换为极坐标转换,进行傅里叶变换,得到军事图像的改进傅里叶描述子;利用加权稀疏表示分类方法对图像进行分类。该方法的优点在于提取的傅里叶描述子具有很好的平移、旋转、尺度缩放和轮廓起始点的不变性。加权稀疏表示能够克服遮挡、弱特征、视角和姿态变化等因素的影响,并且具有较强的形状区分能力。在ICL军事图像数据库上进行分类实验,分类率高达92%以上。结果表明,该方法是有效可行的,能够为军事图像自动分类识别系统提供技术参考。 展开更多
关键词 军事图像分类 中心-边界距离序列 改进傅里叶描述子 加权稀疏表示分类
在线阅读 下载PDF
基于稀疏表示分类的人工地物目标检测 被引量:5
12
作者 汪伟 程斌 《控制工程》 CSCD 北大核心 2020年第12期2158-2167,共10页
针对遥感图像中人工地物目标复杂性和多样性的问题,提出了一种基于稀疏表示分类的人工地物目标检测方法。根据遥感图像的特点,首先,在冗余Contourlet变换域中对遥感图像进行了预处理,降低了噪声的干扰;其次,研究了高效的特征提取方法,... 针对遥感图像中人工地物目标复杂性和多样性的问题,提出了一种基于稀疏表示分类的人工地物目标检测方法。根据遥感图像的特点,首先,在冗余Contourlet变换域中对遥感图像进行了预处理,降低了噪声的干扰;其次,研究了高效的特征提取方法,通过在冗余Contourlet多级分解中引入最优基函数选择策略,计算出遥感图像的旋转不变纹理特征和基于低频的强度特征,并与遥感图像中的分形误差特征进行组合,得出复合特征向量;最后,利用稀疏表示分类方法对提取出的组合特征进行处理,完成了人工地物目标分类,并且利用数学形态学操作对分类的结果进行了优化。实验结果表明,该方法对人工地物目标检测具有较好的鲁棒性和准确性。 展开更多
关键词 遥感图像 人工地物检测 稀疏表示分类 最优基选择 冗余Contourlet变换
在线阅读 下载PDF
基于增强字典稀疏表示分类的SAR目标识别方法 被引量:3
13
作者 陈婕 廖志平 《探测与控制学报》 CSCD 北大核心 2020年第3期75-81,共7页
针对合成孔径雷达(SAR)目标识别方法中分类决策存在的不足,提出基于增强字典稀疏表示分类的SAR目标识别方法。该方法通过对原始训练样本进行多信噪比、多分辨率样本构造,进而构建描述能力更强、对于扩展操作条件更稳健的增强字典进而采... 针对合成孔径雷达(SAR)目标识别方法中分类决策存在的不足,提出基于增强字典稀疏表示分类的SAR目标识别方法。该方法通过对原始训练样本进行多信噪比、多分辨率样本构造,进而构建描述能力更强、对于扩展操作条件更稳健的增强字典进而采用稀疏表示分类器提高目标识别的整体性能。基于MSTAR数据集的实验结果表明,该方法在对于3类和10类目标的平均识别率可分别达到98.61%和98.12%,验证其区分多类目标的能力;通过测试在不同信噪比、不同分辨率下的识别性能,验证了该方法对于噪声干扰、分辨率变化具有较强的稳健性。 展开更多
关键词 合成孔径雷达 目标识别 增强字典 稀疏表示分类
在线阅读 下载PDF
基于正则化边界Fisher分析和稀疏表示分类的人脸识别方法 被引量:2
14
作者 黄可坤 《计算机应用》 CSCD 北大核心 2013年第6期1723-1726,共4页
边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较... 边界Fisher分析(MFA)应用于人脸识别时会遇到小样本问题,如果用主成分分析进行降维来处理该问题,则会丢失一些对分类有益的分量;如果把MFA的目标函数用最大间距准则代替,则较难得到最佳参数。提出了一种正则化的MFA方法,该方法用一个较小的数乘上单位阵构造正则项,然后加到MFA的类内散度矩阵中,使得所得矩阵是可逆的,并且不会丢失对分类有益的分量,也容易确定其中的参数。因为一个样本通常能被少数几个距离比较近的同类样本很好地线性表达,在正则化MFA降维之后结合使用稀疏表示分类算法进一步提高识别率。在FERET和AR数据库上的实验表明,对比一些经典的降维方法,使用该方法能显著提高识别率。 展开更多
关键词 人脸识别 降维 FISHER线性判别分析 边界Fisher分析 稀疏表示分类
在线阅读 下载PDF
基于级联稀疏表示分类器的人脸识别算法 被引量:2
15
作者 杨宇 《工矿自动化》 北大核心 2014年第5期46-48,共3页
针对基于稀疏表示的分类器算法复杂度高、识别速度较慢的问题,提出了基于级联稀疏表示分类器的人脸识别算法。该算法采用级联的思想,通过多次重复使用基于稀疏表示的分类器,逐级精确确定待分类样本所在的类,降低了计算复杂度和识别难度... 针对基于稀疏表示的分类器算法复杂度高、识别速度较慢的问题,提出了基于级联稀疏表示分类器的人脸识别算法。该算法采用级联的思想,通过多次重复使用基于稀疏表示的分类器,逐级精确确定待分类样本所在的类,降低了计算复杂度和识别难度,达到了识别率高、鲁棒性强、识别速度快的目标。 展开更多
关键词 人脸识别 级联稀疏表示分类 识别率 鲁棒性
在线阅读 下载PDF
基于声音特征与改进稀疏表示分类的断路器机械故障诊断方法 被引量:17
16
作者 孙玉伟 罗林根 +3 位作者 陈敬德 王辉 盛戈皞 江秀臣 《电网技术》 EI CSCD 北大核心 2022年第3期1214-1222,共9页
机械缺陷是导致断路器故障运行的主要原因之一,为了实现对断路器机械故障的诊断,该文根据人耳听觉特性提取断路器合闸声音信号的联合倒谱系数作为声音特征向量,运用线性判别分析和核主成分分析对特征向量进行优化与降维,进而采用稀疏表... 机械缺陷是导致断路器故障运行的主要原因之一,为了实现对断路器机械故障的诊断,该文根据人耳听觉特性提取断路器合闸声音信号的联合倒谱系数作为声音特征向量,运用线性判别分析和核主成分分析对特征向量进行优化与降维,进而采用稀疏表示分类算法对特征向量进行识别,将线性判别分析中的散度概念引入到稀疏表示分类目标函数以改善分类器性能。实验结果表明,该文所提方法能够准确识别断路器机械故障与变电站常见声音类别。将改进稀疏表示分类算法同稀疏表示分类、支持向量机与K近邻算法进行比较,结果表明该方法识别准确率较高,识别效果较好;最后在含噪情况下对该文所提方法的应用效果开展实验,并对联合倒谱系数和单一倒谱系数的识别效果进行比较。 展开更多
关键词 断路器 故障诊断 声音特征 联合倒谱系数 改进稀疏表示分类 模式识别
在线阅读 下载PDF
多稀疏表示分类器决策融合的人脸识别 被引量:9
17
作者 唐彪 金炜 +1 位作者 符冉迪 龚飞 《电信科学》 2018年第4期31-40,共10页
针对目前人脸识别仍然存在顽健性较差的问题,提出一种多稀疏表示分类器决策融合(FR-MSRC)的人脸识别方法。首先提取3组特征,并训练3个稀疏表示子分类器,然后引入决策融合的思想,根据每个子分类器的分类性能,通过迭代运算过程自适应确定... 针对目前人脸识别仍然存在顽健性较差的问题,提出一种多稀疏表示分类器决策融合(FR-MSRC)的人脸识别方法。首先提取3组特征,并训练3个稀疏表示子分类器,然后引入决策融合的思想,根据每个子分类器的分类性能,通过迭代运算过程自适应确定各子分类器的融合权值,最后利用融合权值对多个子分类器的输出结果进行决策,实现不同复杂因素干扰下的人脸识别,分别在Yale B、JAFFE和AR人脸库中进行光照、表情、遮挡以及多类型因素混合干扰实验。实验结果表明,本文提出的方法在复杂的环境中仍保持较高的识别率,顽健性更佳。 展开更多
关键词 人脸识别 稀疏表示分类 决策融合
在线阅读 下载PDF
结合KSVD和分类稀疏表示的图像压缩感知 被引量:17
18
作者 翟雪含 朱卫平 康彬 《计算机工程与应用》 CSCD 北大核心 2015年第6期193-198,共6页
由于传统稀疏字典训练方法不能充分利用图像细节信息,提出一种分类稀疏字典训练方法。根据待训练样本的特性,将其划分为平滑、边缘和纹理三类,用KSVD算法分别训练出适合三类图像块特性的冗余字典,利用构造的冗余字典分别稀疏表示三类图... 由于传统稀疏字典训练方法不能充分利用图像细节信息,提出一种分类稀疏字典训练方法。根据待训练样本的特性,将其划分为平滑、边缘和纹理三类,用KSVD算法分别训练出适合三类图像块特性的冗余字典,利用构造的冗余字典分别稀疏表示三类图像块。同时根据每类图像块所含信息量,自适应地分配测量率。实验结果表明,和单一正交基、冗余字典相比,该算法的稀疏系数更加稀疏,在低图像测量率时,重构效果更好,对边缘信息丰富的图像重构效果改善尤为明显。 展开更多
关键词 分块压缩感知 自适应测量 分类稀疏表示 冗余字典
在线阅读 下载PDF
基于稀疏表示分类器的和弦识别研究 被引量:7
19
作者 董丽梦 李锵 关欣 《计算机工程与应用》 CSCD 2012年第29期133-136,219,共5页
和弦识别作为音乐信息标注的基础,在分析音乐结构和旋律方面具有非常重要的作用。结合音乐理论知识,提出一种基于稀疏表示分类器的和弦识别方法。与传统的基于帧的识别方法不同,以节拍作为和弦变化的最小时间间隔,利用CQT(Constant-Q Tr... 和弦识别作为音乐信息标注的基础,在分析音乐结构和旋律方面具有非常重要的作用。结合音乐理论知识,提出一种基于稀疏表示分类器的和弦识别方法。与传统的基于帧的识别方法不同,以节拍作为和弦变化的最小时间间隔,利用CQT(Constant-Q Transform)变换对音乐信号进行时频分析,提取PCP(PitchClass Profile)特征,采用稀疏表示分类器(Sparse Representation-based Classification,SRC)进行和弦识别。实验结果表明,提出的特征和识别方法在识别率上均高于传统的方法。 展开更多
关键词 和弦识别 节拍跟踪 音级轮廓(PCP) 稀疏表示分类
在线阅读 下载PDF
基于主元分析和线性判别分析降维的稀疏表示分类 被引量:3
20
作者 那天 宋晓宁 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期286-291,共6页
为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构... 为解决传统的稀疏表示分类(SRC)算法在小样本人脸识别过程中的过大时间开销问题,该文提出2种基于降维的SRC算法。扩展主元分析(EPCA)算法利用PCA算法构造约束优化稀疏模型,对测试样本进行线性表示,通过比较测试样本和每类训练样本的重构PCA系数进行决策分类。EPCA+线性判别分析(EPCA+LDA)算法在EPCA算法的基础上增加LDA约束模型,提高重构样本的稀疏表示的鉴别性。将该文算法应用于AR和FERET人脸数据库,与扩展SRC(ESRC)、SRC、SRC_PCA、协同表达分类(CRC)算法相比,该文算法有较高的识别率和较低的时间复杂度。将EPCA算法和EPCA+LDA算法应用于FETET数据集,识别率分别为61.46%和59.17%,运行时间分别为383.02 s和220.62 s。 展开更多
关键词 主元分析 线性判别分析 降维 稀疏表示分类 人脸识别 协同表达分类
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部