现有的波达方向(Direction Of Arrival,DOA)和极化参数估计方法大多基于子空间理论.本文从稀疏信号重构角度出发,提出了一种新的DOA和极化角度估计算法.该算法首先构建一个只包含DOA信息的累积量矩阵模型,然后基于加权l1范数最小化获得...现有的波达方向(Direction Of Arrival,DOA)和极化参数估计方法大多基于子空间理论.本文从稀疏信号重构角度出发,提出了一种新的DOA和极化角度估计算法.该算法首先构建一个只包含DOA信息的累积量矩阵模型,然后基于加权l1范数最小化获得DOA估计.在DOA估计的基础上,进一步通过求和平均运算构建三个包含不同极化信息的累积量向量模型,利用Zhang惩罚进行稀疏性约束,获得近似无偏的极化角度估计.阐述了如何利用极化信息来区分两个入射角度一样的信源信号.计算机仿真结果验证了所提算法的有效性.展开更多
研究压缩传感(Compressed Sensing,CS)的稀疏信号重构算法,该文提出一种新的算法框架阈值化迭代检测估计(Iterative Detection Estimation with Thresholding,IDET)。算法框架包括两个方面:选择单阶段阈值化(One-Stage Thresholding,OST...研究压缩传感(Compressed Sensing,CS)的稀疏信号重构算法,该文提出一种新的算法框架阈值化迭代检测估计(Iterative Detection Estimation with Thresholding,IDET)。算法框架包括两个方面:选择单阶段阈值化(One-Stage Thresholding,OST)算法的迭代步作为支持集检测的参考;根据稀疏信号的特征设计支持集检测方法。同时,提出该算法框架的实现算法,实现算法先检测由迭代硬阈值化(Iterative Hard Thresholding,IHT)迭代步得到一个支持集,然后通过求解支持集上的最小二乘问题来估计待重构的稀疏信号,迭代上述两个步骤直至满足条件停止。IDET算法的关键在于支持集检测,该文提出3种适用于快速衰减信号的支持集检测方法。实验结果表明,IDET稀疏重构性能优于IHT的其他加速算法。展开更多
文摘现有的波达方向(Direction Of Arrival,DOA)和极化参数估计方法大多基于子空间理论.本文从稀疏信号重构角度出发,提出了一种新的DOA和极化角度估计算法.该算法首先构建一个只包含DOA信息的累积量矩阵模型,然后基于加权l1范数最小化获得DOA估计.在DOA估计的基础上,进一步通过求和平均运算构建三个包含不同极化信息的累积量向量模型,利用Zhang惩罚进行稀疏性约束,获得近似无偏的极化角度估计.阐述了如何利用极化信息来区分两个入射角度一样的信源信号.计算机仿真结果验证了所提算法的有效性.
文摘研究压缩传感(Compressed Sensing,CS)的稀疏信号重构算法,该文提出一种新的算法框架阈值化迭代检测估计(Iterative Detection Estimation with Thresholding,IDET)。算法框架包括两个方面:选择单阶段阈值化(One-Stage Thresholding,OST)算法的迭代步作为支持集检测的参考;根据稀疏信号的特征设计支持集检测方法。同时,提出该算法框架的实现算法,实现算法先检测由迭代硬阈值化(Iterative Hard Thresholding,IHT)迭代步得到一个支持集,然后通过求解支持集上的最小二乘问题来估计待重构的稀疏信号,迭代上述两个步骤直至满足条件停止。IDET算法的关键在于支持集检测,该文提出3种适用于快速衰减信号的支持集检测方法。实验结果表明,IDET稀疏重构性能优于IHT的其他加速算法。