该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号...该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号验证所提算法有效性。结果表明,基于过完备字典稀疏表示的多通道脑电信号,能够为多通道脑电信号压缩感知重构算法提供更多的时空相关性信息,比传统多通道脑电信号压缩感知重构算法所得的信噪比值提高近12 d B,重构时间减少0.75 s,显著提高多通道脑电信号联合重构性能。展开更多
The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibrat...The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals.展开更多
文摘该文基于多通道脑电信号时空特性构建非正交变换过完备字典,准确稀疏表示蕴含时空相关性信息的多通道脑电信号,提高基于时空稀疏贝叶斯学习模型的多通道脑电信号压缩感知联合重构算法性能。实验选用eegmmidb脑电数据库的多通道脑电信号验证所提算法有效性。结果表明,基于过完备字典稀疏表示的多通道脑电信号,能够为多通道脑电信号压缩感知重构算法提供更多的时空相关性信息,比传统多通道脑电信号压缩感知重构算法所得的信噪比值提高近12 d B,重构时间减少0.75 s,显著提高多通道脑电信号联合重构性能。
基金Projects(51375484,51475463)supported by the National Natural Science Foundation of ChinaProject(kxk140301)supported by Interdisciplinary Joint Training Project for Doctoral Student of National University of Defense Technology,China
文摘The bearing fault information is often interfered or lost in the background noise after the vibration signal being transferred complicatedly, which will make it very difficult to extract fault features from the vibration signals. To avoid the problem in choosing and extracting the fault features in bearing fault diagnosing, a novelty fault diagnosis method based on sparse decomposition theory is proposed. Certain over-complete dictionaries are obtained by training, on which the bearing vibration signals corresponded to different states can be decomposed sparsely. The fault detection and state identification can be achieved based on the fact that the sparse representation errors of the signal on different dictionaries are different. The effects of the representation error threshold and the number of dictionary atoms used in signal decomposition to the fault diagnosis are analyzed. The effectiveness of the proposed method is validated with experimental bearing vibration signals.