期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
基于增广Huber正则化稀疏低秩矩阵的旋转机械微弱故障诊断 被引量:5
1
作者 李庆 胡炜 +1 位作者 彭二飞 LIANG Steven Y 《中国电机工程学报》 EI CSCD 北大核心 2019年第15期4579-4588,共10页
在多重故障相互耦合和强烈背景噪声下,提取大型旋转机械中的复合微弱故障特征是一个难点,针对这一问题,提出一种新的基于增广Huber正则化稀疏低秩矩阵(augmented Huber regularized sparse low-rank-matrix,AHR-SLM)的旋转机械故障特征... 在多重故障相互耦合和强烈背景噪声下,提取大型旋转机械中的复合微弱故障特征是一个难点,针对这一问题,提出一种新的基于增广Huber正则化稀疏低秩矩阵(augmented Huber regularized sparse low-rank-matrix,AHR-SLM)的旋转机械故障特征提取方法,以大型减速机齿轮箱复合微弱诊断为例。该方法借助于非凸罚正则化稀疏低秩矩阵的思想,通过引入增广Huber罚函数代替传统最小化L1-norm融合套索算法,建立正则化目标成本函数,推导所建立模型的严格凸性,同时讨论模型严格凸性前提下的模型参数最优取值问题,并利用前向–后向算法对所建立模型进行求解。仿真算例与大型减速机齿轮箱微弱故障诊断实例表明:该方法不仅能提取隐藏在强烈外界噪声中的复合微弱故障特征,而且改善传统最小化L1-norm融合套索算法在提取微弱故障冲击时产生的稀疏系数低估与故障频率丢失问题,以及变分模态分解与快速谱峭度图特征提取算法产生的能量衰减与故障频率丢失问题。 展开更多
关键词 复合微弱故障 增广Huber函数 非凸罚正则化 稀疏低秩矩阵 齿轮箱
在线阅读 下载PDF
基于低秩稀疏矩阵分解与定位窗滤波的混响抑制技术
2
作者 马怀逸 朱代柱 《舰船科学技术》 北大核心 2024年第20期153-158,共6页
在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混... 在强混响背景下,使用传统的预白化处理、时频分析以及子空间分析等方法对动目标检测效果不佳,针对这一问题,本文利用近年来新引入的低秩稀疏矩阵分解理论来提高强混响背景下的动目标检测能力,采用多帧数据联合的鲁棒PCA处理算法,结合混响数据的声学特征将声学检测问题转化为图像分解问题,并通过对比PCA算法处理结果,给出算法的性能比较;与此同时,本文结合目标运动连续性和稀疏杂点随机性的特征差异,提出一种定位窗滤波方法,进一步滤除稀疏杂点,净化主动声呐显示图像,提高主动声呐动目标检测性能。仿真及试验数据处理结果说明,在阵元端信混比-5 dB情况下,算法仍然可以对目标准确定位,滤除稀疏杂点,且在时频域上效果更佳,显著提高了主动声呐动目标检测能力。 展开更多
关键词 强混响 动目标检测 稀疏矩阵分解 定位窗滤波
在线阅读 下载PDF
基于非局部低秩稀疏矩阵分解的低剂量脑灌注CT图像恢复方法 被引量:3
3
作者 牛善洲 刘宏 +5 位作者 刘沛沄 张梦真 李硕 梁礼境 李楠 刘国良 《南方医科大学学报》 CAS CSCD 北大核心 2022年第9期1309-1316,共8页
目的为了减少脑灌注CT检查的辐射剂量,提高低剂量脑灌注CT图像质量,本文提出一种基于非局部低秩稀疏矩阵分解的低剂量脑灌注CT图像恢复方法。方法对低剂量脑灌注CT图像进行分块形成一个矩阵,构建低秩稀疏矩阵分解模型进行求解后得到优... 目的为了减少脑灌注CT检查的辐射剂量,提高低剂量脑灌注CT图像质量,本文提出一种基于非局部低秩稀疏矩阵分解的低剂量脑灌注CT图像恢复方法。方法对低剂量脑灌注CT图像进行分块形成一个矩阵,构建低秩稀疏矩阵分解模型进行求解后得到优质的低剂量脑灌注CT图像,最后利用恢复后的脑灌注CT序列图像计算出脑血流动力学参数图像。结果在数值实验中,滤波反投影算法的图像的平均结构相似性为0.9438,本文方法恢复结果的平均结构相似性提高到0.9765;滤波反投影算法得到的脑血流量和脑血容量参数图像的结构相似性分别为0.7005和0.6856,本文方法得到的脑血流量和脑血容量参数图像的结构相似性提高到0.7871和0.7972。结论本文方法在低剂量脑灌注CT图像噪声抑制和结构保持方面均有很好的表现,并且可以获取准确的脑血流动力学参数图像。 展开更多
关键词 剂量脑灌注CT 图像恢复 非局部稀疏矩阵分解 脑血流动力学参数
在线阅读 下载PDF
基于低秩稀疏矩阵分解的非接触心率估计 被引量:1
4
作者 黄继风 白国臣 +1 位作者 熊乃学 魏建国 《图学学报》 CSCD 北大核心 2020年第1期66-72,共7页
心率检测作为一项重要的生理检测指标,在医学健康、刑侦检测、信息安全等方面具有重要应用。计算机视觉领域近期的研究表明,心率信号可以通过摄像头捕捉的视频予以获取。现有的研究方法在理想的实验环境下已取得较好的效果,然而在自然... 心率检测作为一项重要的生理检测指标,在医学健康、刑侦检测、信息安全等方面具有重要应用。计算机视觉领域近期的研究表明,心率信号可以通过摄像头捕捉的视频予以获取。现有的研究方法在理想的实验环境下已取得较好的效果,然而在自然状态面部旋转以及出现各种噪声(阴影、遮挡)时鲁棒性较弱。通过检测人脸的关键点,获得面部区域的感兴趣,避免因面部旋转引入检测误差,在现有模型的基础上提出一种基于低秩稀疏矩阵分解的非接触式心率估计模型,对频域血液体积脉冲(BVP)信号矩阵实现去噪处理,解决使用摄像头非接触式获取心率信号时存在的问题。实验显示,该模型在MAHNOB-HCI数据集上实现了3.25%的误差比均值,优于现有的模型。 展开更多
关键词 稀疏矩阵分解 非接触式 心率信号估计 人脸关键点检测 噪声 鲁棒性
在线阅读 下载PDF
低秩稀疏矩阵优化问题的模型与算法 被引量:3
5
作者 潘少华 文再文 《运筹学学报》 北大核心 2020年第3期1-26,共26页
低秩稀疏矩阵优化问题是一类带有组合性质的非凸非光滑优化问题.由于零模与秩函数的重要性和特殊性,这类NP-难矩阵优化问题的模型与算法研究在过去十几年里取得了长足发展。本文从稀疏矩阵优化问题、低秩矩阵优化问题、低秩加稀疏矩阵... 低秩稀疏矩阵优化问题是一类带有组合性质的非凸非光滑优化问题.由于零模与秩函数的重要性和特殊性,这类NP-难矩阵优化问题的模型与算法研究在过去十几年里取得了长足发展。本文从稀疏矩阵优化问题、低秩矩阵优化问题、低秩加稀疏矩阵优化问题、以及低秩张量优化问题四个方面来综述其研究现状;其中,对稀疏矩阵优化问题,主要以稀疏逆协方差矩阵估计和列稀疏矩阵优化问题为典例进行概述,而对低秩矩阵优化问题,主要从凸松弛和因子分解法两个角度来概述秩约束优化和秩(正则)极小化问题的模型与算法研究。最后,总结了低秩稀疏矩阵优化研究中的一些关键与挑战问题,并提出了一些可以探讨的问题。 展开更多
关键词 稀疏矩阵优化 凸松弛模型 因子分解模型 精确恢复条件 收敛性
在线阅读 下载PDF
基于稀疏与低秩矩阵分解的视频背景建模 被引量:8
6
作者 周密 宋占杰 《计算机应用研究》 CSCD 北大核心 2015年第10期3175-3178,共4页
针对传统背景建模方法的缺点,基于稀疏与低秩矩阵分解理论,在增广拉格朗日乘子法框架下,研究了一种收敛更快的非精确增广拉格朗日乘子法(IALM),直接实现监控视频序列中背景和前景的分离。该算法采用块Lanczos方法和热启动技术实现部分... 针对传统背景建模方法的缺点,基于稀疏与低秩矩阵分解理论,在增广拉格朗日乘子法框架下,研究了一种收敛更快的非精确增广拉格朗日乘子法(IALM),直接实现监控视频序列中背景和前景的分离。该算法采用块Lanczos方法和热启动技术实现部分奇异值分解,使得原有IALM的计算量和迭代次数得以控制。基于实际监控视频的实验结果表明,该算法恢复出的背景矩阵更为低秩,且运行时间下降了几十倍,即能够更加简洁高效地解决背景建模这一实际问题。 展开更多
关键词 背景建模 稀疏矩阵分解 增广拉格朗日乘子法 奇异值分解 块Lanczos 热启动
在线阅读 下载PDF
压缩感知的矩阵低秩稀疏分解目标跟踪算法 被引量:3
7
作者 刘占林 王琰 杨大为 《小型微型计算机系统》 CSCD 北大核心 2017年第4期881-885,共5页
针对复杂场景下目标跟踪过程中目标遮挡、光照变化、快速运动等问题,提出一种压缩感知的矩阵低秩稀疏分解目标跟踪算法.该算法对跟踪区域提取特征向量压缩感知,用压缩域特征构建目标外观模型产生观测矩阵.采用非精确增广拉格朗日乘子法... 针对复杂场景下目标跟踪过程中目标遮挡、光照变化、快速运动等问题,提出一种压缩感知的矩阵低秩稀疏分解目标跟踪算法.该算法对跟踪区域提取特征向量压缩感知,用压缩域特征构建目标外观模型产生观测矩阵.采用非精确增广拉格朗日乘子法对观测矩阵低秩稀疏分解,获得各个候选目标的稀疏误差向量并构建误差矩阵.通过求解误差矩阵最小1-范数问题得到目标估计,并对目标模板字典在线更新适应目标外观变化.实验结果表明,算法在目标发生部分遮挡、光照变化、快速运动等复杂情况下,能够实现目标的鲁棒跟踪. 展开更多
关键词 目标跟踪 压缩感知 矩阵稀疏分鳃 稀疏表示 增广拉格朗日乘子法
在线阅读 下载PDF
大矩阵压缩特征目标的低秩跟踪算法 被引量:1
8
作者 杨大为 刘占林 王琰 《电子测量与仪器学报》 CSCD 北大核心 2017年第6期833-838,共6页
针对压缩感知的矩阵低秩稀疏分解目标跟踪算法实时性差的问题,提出一种大矩阵压缩特征目标的低秩跟踪算法。该算法通过将大矩阵分成多个小矩阵的方法构建观测矩阵,进行矩阵低秩稀疏分解,获得各候选目标的误差向量并构建误差矩阵,求解误... 针对压缩感知的矩阵低秩稀疏分解目标跟踪算法实时性差的问题,提出一种大矩阵压缩特征目标的低秩跟踪算法。该算法通过将大矩阵分成多个小矩阵的方法构建观测矩阵,进行矩阵低秩稀疏分解,获得各候选目标的误差向量并构建误差矩阵,求解误差矩阵列向量最小1-范数问题得到跟踪结果。为了适应跟踪过程中目标外观信息的变化,基于向量相似度判别有选择地更新字典。在跟踪结果不可信时,利用轨迹修正更新当前帧跟踪结果。通过6个典型视频序列上的对比实验,新算法的实时性是原算法的3倍。实验结果表明,在目标发生部分遮挡、光照变化、快速运动时,所提出的算法能实现目标的鲁棒跟踪。 展开更多
关键词 压缩感知 矩阵稀疏分解 稀疏表达 增广拉格朗日乘子法 向量相似度
在线阅读 下载PDF
混合信息增强的论文推荐方法
9
作者 郭盼盼 周刚 +2 位作者 卢记仓 李珠峰 祝涛杰 《计算机应用》 北大核心 2025年第6期1879-1887,共9页
针对传统协同过滤(CF)存在的数据稀疏和冷启动的问题以及在矩阵分解方法生成结果矩阵的过程中由于各种变换产生误差的问题,提出一种混合信息增强的低秩稀疏矩阵分解(LSMF)论文推荐方法。首先,利用预训练的文档级表示学习和引文感知转换... 针对传统协同过滤(CF)存在的数据稀疏和冷启动的问题以及在矩阵分解方法生成结果矩阵的过程中由于各种变换产生误差的问题,提出一种混合信息增强的低秩稀疏矩阵分解(LSMF)论文推荐方法。首先,利用预训练的文档级表示学习和引文感知转换器SPECTER(Scientific Paper Embeddings using Citation-informed TransformERs)学习论文的表示,计算并构造文章之间的相似度矩阵,将相似度矩阵与引文矩阵相加得到一个混合信息矩阵;其次,通过矩阵乘法将内容相似信息与引用信息融入到论文-作者矩阵中;最后,利用LSMF模型分解论文-作者矩阵以得到推荐列表。在ACL文集网络(AAN)和DBLP数据集上的实验结果表明,所提方法取得了较好的推荐性能,且所提方法引入内容信息与引用信息的方式同样适用于其他矩阵分解模型。对于非负矩阵分解(NMF)、奇异值分解(SVD)、低秩稀疏矩阵补全(LSMC)和去分解(GoDec),利用混合信息后的模型比未利用混合信息的原模型在2个数据集上的前30个推荐结果的召回率(R@30)分别提升了18.72、7.43、11.53、14.62和20.58、2.11、7.91、5.01个百分点。 展开更多
关键词 论文推荐 协同过滤 数据稀疏 冷启动 稀疏矩阵分解
在线阅读 下载PDF
基于改进加权核范数的红外弱小目标检测 被引量:8
10
作者 翟昊 罗晓琳 +1 位作者 吴令夏 王荣昌 《激光与红外》 CAS CSCD 北大核心 2021年第6期776-781,共6页
针对传统基于鲁棒主成分分析(RPCA)的红外弱小目标检测算法对噪声不敏感,算法运行时间长,鲁棒性不强的问题,提出一种重加权红外小目标图像模型,并用非精确增广拉格朗日乘子法(AIALM)求解。该方法首先将原始红外图像转化为红外块图像模型... 针对传统基于鲁棒主成分分析(RPCA)的红外弱小目标检测算法对噪声不敏感,算法运行时间长,鲁棒性不强的问题,提出一种重加权红外小目标图像模型,并用非精确增广拉格朗日乘子法(AIALM)求解。该方法首先将原始红外图像转化为红外块图像模型,然后采用重加权核范数对背景块图像进行约束,较好地保留了背景边缘。针对单纯使用l1范数不能抑制某些噪声或杂波的问题,引入了加权l1范数,进一步增强了目标图像的稀疏性。最后,将红外块图像模型转化为重加权RPCA问题,并用AIALM求解。通过大量实验表明:该算法在抑制背景杂波以及目标检测性能方面要优于其他传统算法。 展开更多
关键词 小目标检测 红外块图 稀疏矩阵 鲁棒主成分分析 重加权
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部