针对传统蜂拥控制模型协同避障的研究,笔者曾对其做出了改进,并加入了Steer to Avoid避障法则,通过仿真表明,它能够有效提高避开静止障碍的效率。该模型用于具有移动障碍的环境时,若障碍的运动方向与节点的判断方向同向,可能会与障碍物...针对传统蜂拥控制模型协同避障的研究,笔者曾对其做出了改进,并加入了Steer to Avoid避障法则,通过仿真表明,它能够有效提高避开静止障碍的效率。该模型用于具有移动障碍的环境时,若障碍的运动方向与节点的判断方向同向,可能会与障碍物保持相对静止,从而大幅度降低避障效率。对Steer to Avoid进一步改进,提出一个新的针对移动障碍物的避障模型。当障碍物的运动趋势和节点的Steer to Avoid转向判断相同而且两者的速度较为接近时,节点将向着障碍物运动的相反方向运动。提出了对障碍物的移动预判。仿真实验结果表明,与传统两个模型相比,该模型在平均速率和时间效率上有显著提高,并且适用于避开未知的移动凸形障碍。展开更多
Path planning of a mobile robot in the presence of multiple moving obstacles is found to be a complicated problem.A planning algorithm capable of negotiating both static and moving obstacles in an unpredictable(on-lin...Path planning of a mobile robot in the presence of multiple moving obstacles is found to be a complicated problem.A planning algorithm capable of negotiating both static and moving obstacles in an unpredictable(on-line)environment is proposed.The proposed incremental algorithm plans the path by considering the quadrants in which the current positions of obstacles as well as target are situated.Also,the governing equations for the shortest path are derived.The proposed mathematical model describes the motion(satisfying constraints of the mobile robot)along a collision-free path.Further,the algorithm is applicable to dynamic environments with fixed or moving targets.Simulation results show the effectiveness of the proposed algorithm.Comparison of results with the improved artificial potential field(iAPF)algorithm shows that the proposed algorithm yields shorter path length with less computation time.展开更多
文摘针对传统蜂拥控制模型协同避障的研究,笔者曾对其做出了改进,并加入了Steer to Avoid避障法则,通过仿真表明,它能够有效提高避开静止障碍的效率。该模型用于具有移动障碍的环境时,若障碍的运动方向与节点的判断方向同向,可能会与障碍物保持相对静止,从而大幅度降低避障效率。对Steer to Avoid进一步改进,提出一个新的针对移动障碍物的避障模型。当障碍物的运动趋势和节点的Steer to Avoid转向判断相同而且两者的速度较为接近时,节点将向着障碍物运动的相反方向运动。提出了对障碍物的移动预判。仿真实验结果表明,与传统两个模型相比,该模型在平均速率和时间效率上有显著提高,并且适用于避开未知的移动凸形障碍。
文摘Path planning of a mobile robot in the presence of multiple moving obstacles is found to be a complicated problem.A planning algorithm capable of negotiating both static and moving obstacles in an unpredictable(on-line)environment is proposed.The proposed incremental algorithm plans the path by considering the quadrants in which the current positions of obstacles as well as target are situated.Also,the governing equations for the shortest path are derived.The proposed mathematical model describes the motion(satisfying constraints of the mobile robot)along a collision-free path.Further,the algorithm is applicable to dynamic environments with fixed or moving targets.Simulation results show the effectiveness of the proposed algorithm.Comparison of results with the improved artificial potential field(iAPF)algorithm shows that the proposed algorithm yields shorter path length with less computation time.