在单无人机辅助的移动边缘计算系统中,为使无人机能服务于大区域中的所有用户设备,可将大区域分成多个子区域,并设定无人机以固定路线在各个子区域间飞行来为用户设备提供计算服务。考虑到用户设备计算资源较匮乏且无人机覆盖区域外的...在单无人机辅助的移动边缘计算系统中,为使无人机能服务于大区域中的所有用户设备,可将大区域分成多个子区域,并设定无人机以固定路线在各个子区域间飞行来为用户设备提供计算服务。考虑到用户设备计算资源较匮乏且无人机覆盖区域外的用户可选择移动至覆盖区域内进行任务卸载以最大化自身效用,可将用户设备的部分卸载问题转化为每个用户设备的效用最大化问题,并利用混合策略博弈和子模博弈来分别确定用户设备的移动概率和卸载数据量,从而得出最优卸载策略,且分别证明了混合策略纳什均衡和纯策略纳什均衡的存在性。仿真结果表明,所提方案与MBO(Binary Offloading Based on Mixed Strategy Game)等经典方案相比可有效提高用户设备的效用,并验证了其收敛性和稳定性。展开更多
计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于...计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性。文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销。采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度。仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销。展开更多
文摘在单无人机辅助的移动边缘计算系统中,为使无人机能服务于大区域中的所有用户设备,可将大区域分成多个子区域,并设定无人机以固定路线在各个子区域间飞行来为用户设备提供计算服务。考虑到用户设备计算资源较匮乏且无人机覆盖区域外的用户可选择移动至覆盖区域内进行任务卸载以最大化自身效用,可将用户设备的部分卸载问题转化为每个用户设备的效用最大化问题,并利用混合策略博弈和子模博弈来分别确定用户设备的移动概率和卸载数据量,从而得出最优卸载策略,且分别证明了混合策略纳什均衡和纯策略纳什均衡的存在性。仿真结果表明,所提方案与MBO(Binary Offloading Based on Mixed Strategy Game)等经典方案相比可有效提高用户设备的效用,并验证了其收敛性和稳定性。
文摘计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mobile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性。文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销。采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度。仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销。