As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, t...As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, the additional relay nodes(RNs) is employed to repair the network and maintain connectivity in AANET. As ANs move, RNs need to move as well in order to re-establish the topology as quickly as possible. The network model and problem definition are firstly given, and then an online approach for RNs' movement control is presented to make ANs achieve certain connectivity requirement during run time. By defining the minimum cost feasible moving matrix(MCFM), a fast algorithm is proposed for RNs' movement control problem. Simulations demonstrate that the proposed algorithm outperforms other control approaches in the highly-dynamic environment and is of great potential to be applied in AANET.展开更多
In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving ...In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.展开更多
文摘As a new sort of mobile ad hoc network(MANET), aeronautical ad hoc network(AANET) has fleet-moving airborne nodes(ANs) and suffers from frequent network partitioning due to the rapid-changing topology. In this work, the additional relay nodes(RNs) is employed to repair the network and maintain connectivity in AANET. As ANs move, RNs need to move as well in order to re-establish the topology as quickly as possible. The network model and problem definition are firstly given, and then an online approach for RNs' movement control is presented to make ANs achieve certain connectivity requirement during run time. By defining the minimum cost feasible moving matrix(MCFM), a fast algorithm is proposed for RNs' movement control problem. Simulations demonstrate that the proposed algorithm outperforms other control approaches in the highly-dynamic environment and is of great potential to be applied in AANET.
基金Project(60673164)supported by the National Natural Science Foundation of ChinaProject(20060533057)supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.