发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向...发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向下过滤技术相结合,采用图存储压缩数据集方法,利用非频繁项集分解子图和频繁长模式过滤数据集相结合的技术,大大减少了迭代次数,降低了CPU时间.最后给出了算法性能比较和算法分析.结果表明,该算法是有效的.展开更多
针对大多数位置预测算法缺乏综合考虑社交关系以及移动模式对用户时空行为的影响,提出一种融合信任圈和移动模式的位置预测框架FTM(a location prediction framework based on trust circle and mobilitypattern)来预测用户的下一个签...针对大多数位置预测算法缺乏综合考虑社交关系以及移动模式对用户时空行为的影响,提出一种融合信任圈和移动模式的位置预测框架FTM(a location prediction framework based on trust circle and mobilitypattern)来预测用户的下一个签到位置。通过分析Gowalla数据集提出一种称为信任圈的新型社交圈,并从中划分出具有代表性的三类社交关系;利用多社交圈模型模拟评估不同信任圈的影响力;根据用户移动模式的特征提出了直接访问模式以及多元访问模式,并利用加权的方法计算不同移动模式的影响力;在真实数据集上进行对比实验,实验结果表明:FTM框架在预测下一签到位置较其他代表性算法具有更高的准确率,平均准确率可以达到92.6%以上,并且随着空间阈值的变化,FTM较其他方法表现出更好的鲁棒性。展开更多
丰富的居民出行行为信息对挖掘城市热点区域以及居民出行模式有很大的帮助,并且对更好地满足居民出行需求也有一定的启示作用.最新的相关研究主要聚焦于城市中区域之间的空间移动模式,但并不能识别移动模式发生的时间以及持续的时长.针...丰富的居民出行行为信息对挖掘城市热点区域以及居民出行模式有很大的帮助,并且对更好地满足居民出行需求也有一定的启示作用.最新的相关研究主要聚焦于城市中区域之间的空间移动模式,但并不能识别移动模式发生的时间以及持续的时长.针对这一问题,提出具有时空特性的区域移动模式挖掘算法STMPZ(Spatio-Temporal based Movement Patterns between Zones).该算法在DBSCAN(Density-based Spatial Clustering of Applications with Noise)算法的基础上,通过将对象从点扩展成一条出行OD(Origin-Destination)记录,并引入时间特性,最终可以挖掘出具有时空特性的区域移动模式.为了验证所提出算法的可行性和有效性,利用真实的上海地铁通勤数据集进行实验,实验结果表明,该算法可以快速有效地检测出具有高覆盖率和准确率的区域移动模式.此外,该算法也可以通过修改聚类过程的参数应用于其他区域或类型的交通数据.展开更多
随着城市的快速发展,城市中人流的管理与移动模式挖掘变得越发重要。同时,随着以群智感知为代表的各种感知技术的发展,提出了智慧城市的概念,智慧城市中的大量感知数据为人流的分析提供了可能性。在智慧城市中,时空数据是最为常见的一...随着城市的快速发展,城市中人流的管理与移动模式挖掘变得越发重要。同时,随着以群智感知为代表的各种感知技术的发展,提出了智慧城市的概念,智慧城市中的大量感知数据为人流的分析提供了可能性。在智慧城市中,时空数据是最为常见的一种数据。本文基于城市中的时空数据,首先提出一种建模方法,将不同种类的时空数据表示为人流模型;然后基于聚类的思想,通过改进传统的基于密度的聚类算法来对人流的移动模式进行挖掘,提出一种人流的移动模式聚类算法:时空密度聚类(Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise,ST-DBSCAN);接着设计了一个移动模式的交通应用场景,并提出对移动模式的评价方法;最后在中国某城市的真实数据集上进行实验与分析,结果表明本文得到的移动模式结果在统一交通服务的场景下可节省25%的交通成本,验证了本文所提移动模式的有效性。展开更多
文摘发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向下过滤技术相结合,采用图存储压缩数据集方法,利用非频繁项集分解子图和频繁长模式过滤数据集相结合的技术,大大减少了迭代次数,降低了CPU时间.最后给出了算法性能比较和算法分析.结果表明,该算法是有效的.
文摘针对大多数位置预测算法缺乏综合考虑社交关系以及移动模式对用户时空行为的影响,提出一种融合信任圈和移动模式的位置预测框架FTM(a location prediction framework based on trust circle and mobilitypattern)来预测用户的下一个签到位置。通过分析Gowalla数据集提出一种称为信任圈的新型社交圈,并从中划分出具有代表性的三类社交关系;利用多社交圈模型模拟评估不同信任圈的影响力;根据用户移动模式的特征提出了直接访问模式以及多元访问模式,并利用加权的方法计算不同移动模式的影响力;在真实数据集上进行对比实验,实验结果表明:FTM框架在预测下一签到位置较其他代表性算法具有更高的准确率,平均准确率可以达到92.6%以上,并且随着空间阈值的变化,FTM较其他方法表现出更好的鲁棒性。
文摘丰富的居民出行行为信息对挖掘城市热点区域以及居民出行模式有很大的帮助,并且对更好地满足居民出行需求也有一定的启示作用.最新的相关研究主要聚焦于城市中区域之间的空间移动模式,但并不能识别移动模式发生的时间以及持续的时长.针对这一问题,提出具有时空特性的区域移动模式挖掘算法STMPZ(Spatio-Temporal based Movement Patterns between Zones).该算法在DBSCAN(Density-based Spatial Clustering of Applications with Noise)算法的基础上,通过将对象从点扩展成一条出行OD(Origin-Destination)记录,并引入时间特性,最终可以挖掘出具有时空特性的区域移动模式.为了验证所提出算法的可行性和有效性,利用真实的上海地铁通勤数据集进行实验,实验结果表明,该算法可以快速有效地检测出具有高覆盖率和准确率的区域移动模式.此外,该算法也可以通过修改聚类过程的参数应用于其他区域或类型的交通数据.
文摘随着城市的快速发展,城市中人流的管理与移动模式挖掘变得越发重要。同时,随着以群智感知为代表的各种感知技术的发展,提出了智慧城市的概念,智慧城市中的大量感知数据为人流的分析提供了可能性。在智慧城市中,时空数据是最为常见的一种数据。本文基于城市中的时空数据,首先提出一种建模方法,将不同种类的时空数据表示为人流模型;然后基于聚类的思想,通过改进传统的基于密度的聚类算法来对人流的移动模式进行挖掘,提出一种人流的移动模式聚类算法:时空密度聚类(Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise,ST-DBSCAN);接着设计了一个移动模式的交通应用场景,并提出对移动模式的评价方法;最后在中国某城市的真实数据集上进行实验与分析,结果表明本文得到的移动模式结果在统一交通服务的场景下可节省25%的交通成本,验证了本文所提移动模式的有效性。