移动机器人在使用单目视觉传感器进行同步定位与建图(simultaneous localization and mapping,SLAM)时,复杂环境中存在大量的光线变化或环境纹理稀疏情况,这是导致其定位不准确的主要因素。因此,文中对ORB-SLAM3系统中前端与定位环节进...移动机器人在使用单目视觉传感器进行同步定位与建图(simultaneous localization and mapping,SLAM)时,复杂环境中存在大量的光线变化或环境纹理稀疏情况,这是导致其定位不准确的主要因素。因此,文中对ORB-SLAM3系统中前端与定位环节进行改进,提升单目视觉移动机器人在复杂环境中的定位精度与鲁棒性。首先,提出区域动态特征概率阈值调整算法对SuperPoint网络进行改进,替换原ORB算法进行图像特征提取,从而获取鲁棒性更强且分布更均匀的视觉特征点;其次,提出共视匹配策略和动态窗口匹配策略,优化了视觉前端的特征匹配与跟踪算法,提升在稀疏纹理场景下的视觉跟踪性能;最后,结合所提改进算法与多传感器信息融合技术,构建了完整的定位系统框架,并在该系统上进行了单目视觉地面移动机器人定位实验。实验结果表明:改进后的算法在EuRoc数据集上的绝对轨迹误差相比ORB-SLAM3降低了8.6%;真实环境中,机器人绝对轨迹误差相比改进前降低了33.59%。展开更多
文摘移动机器人在使用单目视觉传感器进行同步定位与建图(simultaneous localization and mapping,SLAM)时,复杂环境中存在大量的光线变化或环境纹理稀疏情况,这是导致其定位不准确的主要因素。因此,文中对ORB-SLAM3系统中前端与定位环节进行改进,提升单目视觉移动机器人在复杂环境中的定位精度与鲁棒性。首先,提出区域动态特征概率阈值调整算法对SuperPoint网络进行改进,替换原ORB算法进行图像特征提取,从而获取鲁棒性更强且分布更均匀的视觉特征点;其次,提出共视匹配策略和动态窗口匹配策略,优化了视觉前端的特征匹配与跟踪算法,提升在稀疏纹理场景下的视觉跟踪性能;最后,结合所提改进算法与多传感器信息融合技术,构建了完整的定位系统框架,并在该系统上进行了单目视觉地面移动机器人定位实验。实验结果表明:改进后的算法在EuRoc数据集上的绝对轨迹误差相比ORB-SLAM3降低了8.6%;真实环境中,机器人绝对轨迹误差相比改进前降低了33.59%。