通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based...通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based range query)域查询处理算法,能够引入搜索区域进行预裁剪以减少查询精炼阶段所需代价偏高的积分计算.实验仿真表明,采用MP_BBRQ算法的TPU-tree概率查询性能极大地优于传统的TPR-tree索引,且更新性能与传统索引大致相当,具有良好的实用价值.展开更多
发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向...发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向下过滤技术相结合,采用图存储压缩数据集方法,利用非频繁项集分解子图和频繁长模式过滤数据集相结合的技术,大大减少了迭代次数,降低了CPU时间.最后给出了算法性能比较和算法分析.结果表明,该算法是有效的.展开更多
文摘通过在U-tree中添加时间戳和速度矢量等时空因素,提出一种基于U-tree的高效率当前及未来不确定位置信息检索的索引结构TPU-tree,可以支持多维空间中不确定移动对象的索引,并提出了一种改进的基于p-bound的MP_BBRQ(modifiedp-bound based range query)域查询处理算法,能够引入搜索区域进行预裁剪以减少查询精炼阶段所需代价偏高的积分计算.实验仿真表明,采用MP_BBRQ算法的TPU-tree概率查询性能极大地优于传统的TPR-tree索引,且更新性能与传统索引大致相当,具有良好的实用价值.
文摘发现无线通信环境中用户的移动模式是移动对象管理中的一个关键问题.提出一种快速挖掘该模式的算法SAM(split and merge),用来挖掘移动对象所产生有序数据集中潜在的移动模式,从而为移动对象管理提供服务.该算法将自底向上搜索和自顶向下过滤技术相结合,采用图存储压缩数据集方法,利用非频繁项集分解子图和频繁长模式过滤数据集相结合的技术,大大减少了迭代次数,降低了CPU时间.最后给出了算法性能比较和算法分析.结果表明,该算法是有效的.