The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matri...Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matrix equation are given.As a particular case ,the matrix equation X-AXB=C over Ω is also considered.展开更多
The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes ...The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.展开更多
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
基金Supported by the Natural Science Foundation of China(10071078)Supported by the Natural Science Foundation of Shandong Province(Q99A08)
文摘Let Ω be a finite dimensional central algebra and chart Ω≠2 .The matrix equation AXB-CXD=E over Ω is considered.Necessary and sufficient conditions for the existence of centro(skew)symmetric solutions of the matrix equation are given.As a particular case ,the matrix equation X-AXB=C over Ω is also considered.
基金supported by the National High Technology Research and Development Program of China under Grant No. 2011AA010803
文摘The theory of quantum error correcting codes is a primary tool for fighting decoherence and other quantum noise in quantum communication and quantum computation. Recently, the theory of quantum error correcting codes has developed rapidly and been extended to protect quantum information over asymmetric quantum channels, in which phase-shift and qubit-flip errors occur with different probabilities. In this paper, we generalize the construction of symmetric quantum codes via graphs (or matrices) to the asymmetric case, converting the construction of asymmetric quantum codes to finding matrices with some special properties. We also propose some asymmetric quantum Maximal Distance Separable (MDS) codes as examples constructed in this way.