期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
具有先验知识的Q学习算法在AGC中的应用 被引量:10
1
作者 李红梅 严正 《电力系统自动化》 EI CSCD 北大核心 2008年第23期36-40,99,共6页
传统的自动发电控制(AGC)系统通常基于经典的线性控制理论,并且大部分二次调频采用比例积分(PI)控制器,但系统固有的非线性以及结构多变使得积分增益系数不易确定,容易造成超调或调节不足的问题,从而影响系统频率稳定。文中采用强化学... 传统的自动发电控制(AGC)系统通常基于经典的线性控制理论,并且大部分二次调频采用比例积分(PI)控制器,但系统固有的非线性以及结构多变使得积分增益系数不易确定,容易造成超调或调节不足的问题,从而影响系统频率稳定。文中采用强化学习控制器代替传统的PI调节器,将考虑了死区、出力约束、机组爬坡率和时延等非线性环节的AGC系统离散化成Markov链,直接将区域控制误差作为系统状态量,并充分利用AGC环境中的已有信息,结合模糊综合决策方法,获得能够改善Q学习效率的先验知识,采用Q学习算法对其进行学习得出离散的AGC策略。数值仿真的结果验证在非线性AGC系统中应用具有先验知识的Q学习方法可以加快收敛速度,提高学习效率,并通过控制性能评价标准(CPS)进一步检验了该方法的可行性。 展开更多
关键词 自动发电控制 积分增益系数 Q学习 先验知识 模糊综合决策
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部