期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于Gauss-Hermite求积分卡尔曼滤波的SINS非线性初始对准方法 被引量:3
1
作者 冉昌艳 程向红 王海鹏 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期266-271,共6页
为了改善大方位角初始对准精度和缩短收敛时间,在SINS动基座初始对准中引入了简化的Gauss-Hermite求积分卡尔曼滤波(QKF)方法.首先分析了Gauss-Hermite求积分中的单变量Gauss点及其系数配置方法,然后采用直接张量积法将单变量配置扩展... 为了改善大方位角初始对准精度和缩短收敛时间,在SINS动基座初始对准中引入了简化的Gauss-Hermite求积分卡尔曼滤波(QKF)方法.首先分析了Gauss-Hermite求积分中的单变量Gauss点及其系数配置方法,然后采用直接张量积法将单变量配置扩展后得到多变量Gauss点及其系数配置方法,给出了简化的QKF滤波算法.最后通过数学仿真分析比较了单变量积分点数为3的QKF(3点QKF)与比例对称采样UKF的对准性能,以及单变量积分点数取不同值(3,5和7)对QKF滤波性能的影响.结果表明:在动基座SINS大方位角初始对准中,3点QKF的对准精度远高于UKF的精度,方位角估计收敛速度也快于UKF,并且随着单变量Gauss积分点数的增加,QKF对准精度会进一步提高. 展开更多
关键词 积分卡尔曼滤波 捷联惯导系统 初始对准 大方位失准角 SINS (strapdown INERTIAL navingation system)
在线阅读 下载PDF
求积分卡尔曼粒子滤波算法 被引量:13
2
作者 巫春玲 韩崇昭 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第2期25-28,42,共5页
针对非线性/非高斯系统的状态估计问题,提出一种采用求积分卡尔曼滤波(QKF)算法来产生重要性密度函数的粒子滤波新算法——PF-QKF算法.新算法使用统计线性回归的方法,通过一套高斯-厄米特积分点来线性化非线性函数,不需要计算雅可比矩阵... 针对非线性/非高斯系统的状态估计问题,提出一种采用求积分卡尔曼滤波(QKF)算法来产生重要性密度函数的粒子滤波新算法——PF-QKF算法.新算法使用统计线性回归的方法,通过一套高斯-厄米特积分点来线性化非线性函数,不需要计算雅可比矩阵,易于实现,而且所产生的重要性密度函数在系统状态转移概率密度的基础上,融入最新的观测数据,提高了对系统状态后验概率的逼近程度.理论分析和实验结果表明,PF-QKF算法的估计精度比无味粒子滤波(PF-UF)算法提高了约18%,其计算复杂度比PF-UF算法稍有降低,表明PF-QKF算法是一种很有效的非线性滤波算法. 展开更多
关键词 粒子滤波 统计线性回归 积分卡尔曼滤波 重要性密度函数
在线阅读 下载PDF
基于新的数值积分粒子滤波的机载无源定位算法 被引量:4
3
作者 刘学 焦淑红 《宇航学报》 EI CAS CSCD 北大核心 2011年第7期1478-1485,共8页
针对机载无源定位这一多维非线性滤波问题,提出一种新的用3阶数值积分卡尔曼滤波算法来产生重要性密度函数的粒子滤波算法。新算法采用球形和径向数值积分规则选取积分点和确定相应的权值,得出的积分点数仅为状态维数的二倍,大幅的减少... 针对机载无源定位这一多维非线性滤波问题,提出一种新的用3阶数值积分卡尔曼滤波算法来产生重要性密度函数的粒子滤波算法。新算法采用球形和径向数值积分规则选取积分点和确定相应的权值,得出的积分点数仅为状态维数的二倍,大幅的减少了计算量,较好地解决了求积分卡尔曼粒子滤波算法(Quadrature KalmanParticle Filter,QPF)在高维滤波时存在计算量大的问题;而且通过设定比例因子使得所产生的重要性密度函数在系统状态转移概率密度的基础上,融入最新的观测值,增加了粒子的多样性,提高了对系统状态后验概率的逼近程度。仿真结果表明:新算法在稳定性和定位精度上与QPF相当,但计算时间仅约为QPF的15%。 展开更多
关键词 无源定位 粒子滤波 积分卡尔曼滤波(QKF)
在线阅读 下载PDF
基于迭代积分粒子滤波的目标跟踪算法
4
作者 毛少锋 冯新喜 +1 位作者 鹿传国 危璋 《弹箭与制导学报》 CSCD 北大核心 2015年第2期25-28,共4页
针对粒子滤波在非线性目标跟踪中存在粒子退化的问题,提出一种迭代积分粒子滤波的目标跟踪算法。该算法从改进重要性函数的角度入手,在积分卡尔曼滤波的基础上,通过高斯牛顿迭代的方法进行量测更新,并对粒子集合中的粒子进行迭代积分卡... 针对粒子滤波在非线性目标跟踪中存在粒子退化的问题,提出一种迭代积分粒子滤波的目标跟踪算法。该算法从改进重要性函数的角度入手,在积分卡尔曼滤波的基础上,通过高斯牛顿迭代的方法进行量测更新,并对粒子集合中的粒子进行迭代积分卡尔曼滤波,使得构造的重要性函数更加贴近真实后验分布。仿真结果表明,与粒子滤波算法、积分粒子滤波算法相比,该算法在有效改善非线性目标跟踪中粒子退化的同时,提高了跟踪精度。 展开更多
关键词 高斯牛顿迭代 积分卡尔曼滤波 重要性函数 非线性目标跟踪
在线阅读 下载PDF
基于自适应强跟踪CQKF的目标跟踪算法 被引量:9
5
作者 刘畅 杨锁昌 +1 位作者 汪连栋 张宽桥 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第5期982-990,共9页
针对容积积分卡尔曼滤波(CQKF)受模型不确定性影响较大及需要精确已知噪声统计特性的缺点,提出了一种自适应强跟踪CQKF算法。该算法根据强跟踪滤波原理,引入渐消因子调整状态预测协方差矩阵,强迫残差序列正交,有效抑制了模型不确定性引... 针对容积积分卡尔曼滤波(CQKF)受模型不确定性影响较大及需要精确已知噪声统计特性的缺点,提出了一种自适应强跟踪CQKF算法。该算法根据强跟踪滤波原理,引入渐消因子调整状态预测协方差矩阵,强迫残差序列正交,有效抑制了模型不确定性引起的滤波发散。在滤波过程中,利用Sage-Husa时变噪声统计估值器对过程噪声及量测噪声实时估计,提高了算法在未知时变噪声环境下的滤波精度。目标跟踪仿真实验验证了算法的有效性和鲁棒性。 展开更多
关键词 目标跟踪 容积积分卡尔曼滤波(CQKF) 强跟踪滤波 噪声统计估值器 自适应滤波
在线阅读 下载PDF
基于SQKF的锂离子电池剩余寿命预测 被引量:1
6
作者 黄梦涛 胡礼芳 张齐波 《西安科技大学学报》 CAS 北大核心 2022年第5期994-1002,共9页
针对锂离子电池剩余寿命(remaining useful life, RUL)难以精准预测的问题,建立单指数经验容量衰退模型,提出能够有效解决电池非线性问题的平方根求积分卡尔曼滤波(square-root quadrature kalman filtering, SQKF)算法。现有的最优估... 针对锂离子电池剩余寿命(remaining useful life, RUL)难以精准预测的问题,建立单指数经验容量衰退模型,提出能够有效解决电池非线性问题的平方根求积分卡尔曼滤波(square-root quadrature kalman filtering, SQKF)算法。现有的最优估计方法中,求积分卡尔曼滤波(quadrature kalman filtering, QKF)是一种高精度采样算法。研究发现,QKF的估计误差易引起非对称、非正定协方差的传播,影响算法稳定性。在QKF算法上进行平方根扩展,并对单变量求积节点进行多维扩展,将SQKF算法应用于电池容量跟踪估计;另外,从理论上证明SQKF的稳定性。使用NASA公开数据集对算法进行仿真验证,并与现有的扩展卡尔曼滤波、无迹滤波、QKF算法对比。结果表明,在一定条件下,SQKF的RUL预测误差在6%以内,数值精度以及数值稳定性有很大提高,并且研究发现SQKF受锂离子电池个体差异性的影响较小,文中方法在锂离子电池RUL预测的实际应用方面具有参考价值。 展开更多
关键词 锂离子电池 剩余使用寿命 经验容量衰退模型 平方根求积分卡尔曼滤波
在线阅读 下载PDF
非协作式无人机跟踪障碍物改进方法(英文) 被引量:2
7
作者 朱立华 程向红 +1 位作者 曹振新 Fuh-Gwo Yuan 《中国惯性技术学报》 EI CSCD 北大核心 2014年第3期333-339,共7页
针对非协作式无人机检测与避障系统,采用多传感器进行信息融合的方式进行检测与跟踪,提出了采用正交积分点卡尔曼滤波(QKF)实时跟踪运动目标以提高检测精度和增强有效性。首先,对设计的检测与避障系统进行了简述,由两个子系统构成:由捷... 针对非协作式无人机检测与避障系统,采用多传感器进行信息融合的方式进行检测与跟踪,提出了采用正交积分点卡尔曼滤波(QKF)实时跟踪运动目标以提高检测精度和增强有效性。首先,对设计的检测与避障系统进行了简述,由两个子系统构成:由捷联惯性导航系统(SINS)与GPS组成的导航单元及由雷达和光电传感器组成的检测单元。其次,以拐弯模型与Singer模型两个机动运动模型为例测试了QKF算法跟踪检测障碍物的性能,并与无迹卡尔曼滤波(UKF)进行比较。仿真结果表明,相比于UKF算法,QKF算法可以更快速、更准确的检测与跟踪目标。 展开更多
关键词 无人机 检测与避障系统 非协作式 非线性运动 正交积分卡尔曼滤波
在线阅读 下载PDF
基于刚性约束的双移动机器人协同定位 被引量:5
8
作者 刘剑锋 孙力帆 +2 位作者 普杰信 何子述 王燕玲 《电子学报》 EI CAS CSCD 北大核心 2020年第9期1777-1785,共9页
准确、快速的状态估计是保证多机器人顺利完成协作搬运任务的关键.然而,大部分现有多机器人协同定位方法都存在一定的局限性,往往无法同时兼顾定位精度与计算复杂度.因此,本文从协作搬运任务的特点出发,将距离与方位的刚性约束条件引入... 准确、快速的状态估计是保证多机器人顺利完成协作搬运任务的关键.然而,大部分现有多机器人协同定位方法都存在一定的局限性,往往无法同时兼顾定位精度与计算复杂度.因此,本文从协作搬运任务的特点出发,将距离与方位的刚性约束条件引入协同定位中,同时根据机器人之间的紧密耦合关系建立起通用有效的运动模型和量测模型.最终在此刚性约束系统建模的基础上,提出一种基于高斯-厄米特求积分卡尔曼滤波(Quadrature Kalman Filter,QKF)的双移动机器人协同定位方法.仿真实验结果表明:与基于无约束模型的QKF协同定位方法相比,本文所提方法不但具有更高的定位精度,而且计算复杂度大大降低,有助于实现多机器人实时协同定位. 展开更多
关键词 协同定位 协作搬运 刚性约束 积分卡尔曼滤波 双机器人系统 时间复杂度分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部