期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
科学计算应用与流处理器 被引量:1
1
作者 张英 李根 +4 位作者 庞征斌 李永进 张俊 夏军 杨学军 《计算机工程与科学》 CSCD 北大核心 2009年第8期73-76,81,共5页
研究科学计算应用在流处理器上的适用性已成为当前研究热点之一。本文首先分析了流处理器处理科学计算应用的优势以及在流处理器上开发科学计算面临的重大挑战;然后针对不同类型的科学计算应用给出了将科学计算应用映射到流处理器上的... 研究科学计算应用在流处理器上的适用性已成为当前研究热点之一。本文首先分析了流处理器处理科学计算应用的优势以及在流处理器上开发科学计算面临的重大挑战;然后针对不同类型的科学计算应用给出了将科学计算应用映射到流处理器上的关键与优化方法;最后将八种具有不同性能特征的典型科学计算应用映射到流处理器上,并比较和分析这些流程序在时钟精确模拟器运行性能和在处理科学计算应用的相应Fortran程序在主流Itanium 2处理器上的运行性能。实验结果表明,流处理器能有效处理科学计算应用。 展开更多
关键词 流处理器 科学计算应用 SRF
在线阅读 下载PDF
Programming for scientific computing on peta-scale heterogeneous parallel systems 被引量:1
2
作者 杨灿群 吴强 +2 位作者 唐滔 王锋 薛京灵 《Journal of Central South University》 SCIE EI CAS 2013年第5期1189-1203,共15页
Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to co... Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems. 展开更多
关键词 heterogeneous parallel system programming framework scientific computing GPU computing molecular dynamic
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部